April 1966

PRI AT ATDMRTATTIITN AR
WA TTORAL AERONAUTICS AND

. Submitted to

MARSHAIL SPACE FLIGHT CENTER -
SPACE ADMINISTRATION

GECRGE C.

HUNTSVILIE, ALABAMA

gaE K

6 32673

o

P

~REE 202
ToOXPHRER

coniy g g)

\3/‘*
(CATEGORY)

THRu) T

S

{

S
a . { i
2 > B

RN
z <o z
2 "\’\,S—J I.)
= ERRNS I
= j— ~Z
g :- [
i x
O P~ i'a
3] P
- = 1d
N
0
<
z

- FIKAL REPORT

for

A STYDY OF THE STABILITY OF REINFORCED
CYLINDRICAL AND CONICAL SHELLS SUBJECTED TO
VARIOUS TYPES AND COMBINATIONS OF IOADS

)/ COLLEGE OF
" ENGINEERING

TVERSITY OF

3PQO PRICE

CFSTI PRICE(S) §

ward copy (HC)
saicrofiche (MF)

# 653 July 6%

ALABAMA

- UNIVERSITY

ALABAMA




FINAL REPORT
for

NASA Contract NAS8-11155

A STUDY OF THE STABILITY OF REINFORCED CYLINDRICAL AND

CONICAL SHELLS SUBJECTED TO VARIOUS TYPES AND COMBINATIONS OF LOADS

Project Director: William K. Rey

Submitted to
GEORGE C. MARSHALL SPACE FLIGHT CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

BUREAU OF ENGINEERING RESEARCH
UNIVERSITY OF ALABAMA
UNIVERSITY, ALABAMA
APRIL 1966



CONTENTS

SUMMARY ¢ s evvevrnnennasennnas Geeeecetssisecrtarons cerasasa eeseeeaan
INTRODUCTION. . v e eenecenasassssocannnennnns seeann e ctcssenenssans
SCOPE OF WORK. +vuuuenererennns e et
Conical Shells...ccveess ceeenna Cesersseaccanas tessesttansasenaas
Plastic CylindersS.ececeseccsoseccecansoceconnas ceseesacssscassena
Integrally Stiffened Panels....... csesecnsecn cereescsuncoas cesen
Concluding Remarks....cceseeeea creernsaas Geerscecssses ceceacnnns

APPENDIX A - ON CONICAL SHELLS OF LINEARLY VARYING THICKNESS SUB-
JECTED TO LATERAL NORMAL LOADS...eccceenas ceeaans ceens
Introduction. s ceeeeeeeeseeaceseetssoscesssceansacsccscacnnces .
Basic EquationS..ceveecescesseoccenceenns ceesasssnas seeesasenns .
Asymptotic SolUtionS..eeereereerresreenneenceererencsnnosannaans
Particular SolutionS....c.... G escsciescsessstensasescsssosneanes
Numerical Example..... cesscatanas e teseresacesccsccssssesnannsns
Closing RemarkS..cceeeee... cecerersenans cecncs cesecscessasas cones
References...... cesessesseanreasieacen cesecsesesnnns seecansenans
- o N B S,
FigUreS..eeeeeeseseeossceescnoccsccosacnns cecanse cecececscssannas

APPENDIX B - THE THERMAL EFFECT ON CONICAL SHELLS OF LINEARLY VARY-
ING THICKNESS...... Getessssssetnesenereracaes vesessnne

Thermal LoadS..eceeeesesaescesssnsansansas Cesesecesecsannsannans
Asymptotic Solutions........... tecassssesans tetececsscsseranenas
Numerical Example....cccecevcoccsses Ceacaccssacseseana tecasecnnas
References............. ceessnn Geeeticnacncsassnesscessarases cees

Figures...iiieiiieeeenenencnccenens tieccseseccncsrestacectteasanns

APPENDIX C - AN ASYMPTOTIC SOLUTION OF CONICAL SHELLS OF CONSTANT

THICKNESS...... Ceetecerssiasctscnnan ceesececssenansona
Sumary........ cececesvecacccns Ceesessenan seassecssasenns ceecaoes
Introduction..eieeesscececneens ceseceen eeseesecessscsecncans ..
Basic Equations............ e et e sesasasteasaeerssacatseneccsennen
Membrane SolutionS....ceeececencesss Ceessseesesesaassssrannnrena

ii

& W

o

15
20
23
2L
26
27
28




Bending Effect Solution...... ceciesanan e eieeescenesacasasecanes 61

A Particular Solution....... Ceeetesececteacesesesscsesceaassasen 66
Numerical ExampleS.....c..... cecieasanns Ceecsesseneteanciaontanns 68
Closing RemArKS....eveereeseeesessoecosccaosocasnscossassassosss [L
ReferencesS...eeeeeesecesass teeceresas Ceeseeccacecscoenssscaasoan 72
F iU S . e eteeercneesoneonseaeesssasasessssssccassoccssossnssas 73
APPENDIX D - COMPUTER PROGRAMS FOR CONICAL SHELLS.::cceteceacacnoss 78

APPENDIX E - STABILITY OF SMALL PLASTIC CYLINDERS SUBJECTED TO

INTERNAL PRESSURE AND AXTAL COMPRESSION....... cecesess 87
Introduction..... Ceesssaseecaes cresecsceaaes cecessessesenans .... 88
Test Specimens..c.oeeeecececsscasececenns ceesseeses teeersecnreses 89
Equipment and ProcuduresS...ccceeeeececcscccsccsss saasssascasasses 91
Theoretical Buckling Criterion...cceeeececeeeessereseseeaansns ee. 94
Experimental Data...cccevveeeeasss Ceeeccecteacasonann Ceeceseeans 96
Analysis of ReSulbS.ceeeiieenenseeneeeernceceasoosencassssnsnnsce 97
ConclusionS..ceeeceeccoess cesesceansesnn csesescesensecensraness e 100
ReferencesS.ccee coerversreceeccescoeecssososacsssscsscsssananses 101
Tab]leSecsseeecceeeassssssssascacsoannos ceeons cesecsssens ceeeonss 102
Figures....ee00ec.. ceeesesse tesesssescsacsscsesssssasseosenensere 107

APPENDIX F - SHEAR LAG STUDY OF THREE INTEGRALLY STIFFENED PANELS.. 120

SUMMAT Y eeseresenesoonnsns tresessssessensse eeesscssccsasesessesenas 121
Tntroduction. . cieiivecereeecsrecssssossascessconanecscssossasans 121
Experimental Investigation......ccceeeeeeceeccncanns cecenessenas 122
Matrix Analysis....... Ceeeeceactisarons Ceeeceeeecasttscanaensans 125
Data...... ceetrestascasasressenes tecasssssscncnsscssssssnsssncs 133
Analysis of ResultS.eeeeeceracoscccnnsnss Ceccececstesetencencesnn 134
Concluding RemarksS...ceceecesoersocrcscsoccanonnns ceteccsasacens 136
AppendiceS........ C et eeeeesacesceteccenssetsassesasetorannassnses 138
References.....coeeeeeness Ceeectsessensenasnns cecsenae ceeens eees 146

Tables.o-o.-o...................-oo..........-.....-.-.....-.... lh?

APPENDIX G - COMPARISON OF SEVERAL ANALYTTCAL SOLUTIONS TO THE
SHEAR LAG PROBLEM WITH EXPERIMENTAL DATA.......ccecee. 260

iii




Introduction...ceeeeeeeee.. Ceeeteesaeas eeeeresecsscnnanan ceeess 26l

Survey of Previous Work....... Ceeecesecncecnaennn ceeeans cee.. 26l
Purpose and SCOPeceeeeeeeenrvonnass ceeseaanes ceeeeceeaes ce.. 268
Comparison of Analytical Solutions with Experimental Data....... 268
Experimental Data.....ciuiiiieieeeeennnneeerneneenncnenonnees 268
Differential Equation Solution...... Ceecceececcanacesenneanes 268
Minimum Potential Energy Equations......ccccveeeeecceccassess 269
Stress Function Solution...eeeeeeeeeeeeeneeeennennennns ceees. 270
Substitute Single Stringer Method......ceve ceeeeeeeneeennans 270
Energy Solution by Matrix Method........ Ceteesesessensencanns 271

610 4T R E ).+ 271
FigureS.eeeeeeeens Ceeeerecareanns Cereeeans Ceeeesetcneaeeeraaeens 274
AppendiceS. cieeirctencncncennnnns tececscectancnnans Cesereanaaas 287
References....ccveveeven. tescecccnnnnna Seesseesctccnscssatcennraan 337
APPENDIX H - LITERATURE SURVEY....e..... Ceesesccecesessesosarntnens 339
List of PublicationS..ececeeeeenrennnnnns Ceteeeecesitanseananaan 340
L E o T 1 o T 350

iv



A STUDY OF THE STABILITY OF REINFORCED CYLINDRICAL AND

CONICAL SHELLS SUBJECTED TD VARIOUS TYPES AND COMBINATIONS OF LOADS
SUMMARY

The investigation consisted of studies in the following three areas:
analytical studies of the stress distribution in conical shells of both lin-
early varying thickness and constant thickness subjected to various types
of loads; a study of the feasibility of using small plastic cylinders in
investigations of the stability of circular cylindrical shells subjected
simultaneously to axial compressive loads and internal pressure; and, an
experimental and analytical study of the stress distribution in integrally

stiffened panels subjected to axial loads.
INTRODUCTION

Theoretical and experimental investigations of cylindrical and conical
shells began at the University of Alabama under the terms of Contract Number
DA-01-009-0RD-33L with the Redstone Arsenal and Contract Number DA-01-009-
ORD-866 with the U.S. Aimy Ordnance District, Birmingham, Alabama. Follow-
ing these two studies, discussions were held with personnel of the Propul-
sion and Vehicle Engineering Division at the George C. Marshall Space Flight
Center of the National Aeronautics and Space Administration to formulate a
long range research program that would provide analytical procedures, design
data and digital computer programs for the analysis and design of cylindri-
cal and conical shells.

The first phase of the planned program was conducted under the terms
of NASA Contract NAS8-5012 and the results were published by the University
of Alabama Bureau of Engineering Research as a Summary Report in four sec-
tions as follows: Section 1 - "General Instability of an Orthotropic Cir-
cular Cylindrical Shell Subjected to a Pressure Combined with an Axial Load
Considering Both Clamped and Simply Supported Edge Conditions" by Carl C.
Steyer and Thomas A. Carlton, Jr.; Section 2 - "Stress in a Segment of a
Conical Shell Subjected to Lateral Normal Load® by Chin Hao Chang; Section
3 - "General Instability of an Orthotropic Circular Conical Shell Subjected
to Hydrostatic Pressure and a Compressive Axial Force'" by Carl C. Steyer



and Shih-Cheng Zien; and Section li - "Matrix Shear Lag Analysis Utiliz>
ing a High-Speed Digital Computer® by William K. Rey.

The second phase of the research program was conducted under the
terms of NASA Contract NAS8-5168 with the results presented in five tech-
nical reports as follows: Technical Report A - "Fortran II Computer Pro-
gram for the Evaluation of a Donnell Typecof DifferentidliEquation for a
Simply-Supported Cylindrical Shell" by Thomas D. Easter; Technical Report
B - "Fortran II Computer Program for the Evaluation of a Donnell Type of
Differential Equation for an Orthotropic Circular Conical Shell" by Thomas
D. Easter, Colonel M. Pearson and Melvin K. Richardson; Technical Report
C - "An Asympototic Solution for Conical Shells of Linearly Varying Thick-
ness" by Chin Hao Chang; Technical Report D - "Literature Survey with Ab-
stracts" by Raymond C. Montgomery; and Technical Report E - "Theoretical
Analysis of the Static General Instability of an Orthotropic Circular Cy-
linder Subjected to an Axial Ioad, End Moment and Uniform Radial Pressure"
by William S. Viall and Carl C. Steyer. The final report for contract
NAS8-5168 included these five technical reports as appendices.

SCOPE OF WORK

Investigations were simultaneously conducted in the following three
areas: analytical studies of conical shells; a study of the feasibility
of using inexpensive plastic cylinders for experimental investigations
of shell stability; and an analytical and experimental study of the stress
distribution in integrally stiffened flat panels. The studiés of conical
shells were supervised by Dr. Chin Hao Chang of the Department of Engi-
neering Mechanics while Dr. Thomas A. Carlton, Jr. of the Department of
Civil Engineering supervised the feasibility study utilizing small plas-
tic cylinders and Professor William K. Rey of the Department of Aerospace
Engineering supervised the investigation of the stress distribution in
integrally stiffened panels.

Conical Shells

Analyses of conical shells and conical shell segments subjected to
lateral normal loads were presented as Section 2 of the Summary Report
for NASA Contract NAS8-5012 and as Technical Report C for NASA Contract

o



NAS8-5168. In Appendix A, the analysis of conical shells of linearly
varying thickness subjected to lateral normal loads is presented. This
analysis includes corrections to a similar analysis which was previously
presented in Technical Report C for NASA Contract NAS8-5168. In a numer-
ical example, the corrected analysis was applied to a truncated semicir-
cular conical segment that had simply supported generators with the small
end fixed and the other end free. The lateral normal load applied to this
conical segment was assumed to be constant in the meridional direction
and to vary sinusoidally in the circumferential direction. The computer
program used in the numerical example is presented as Computer Program

1 in Appendix D.

The analysis of conical shells of linearly varying thickness was ex-
tended to include thermal loads in Appendix B. In a numerical example,
the truncated semicircular conical segment considered in Appendix A was
analyzed for symmetrical and asymmetrical thermal loads. The computer
program used in this analysis is included in Appendix D as Computer Pro-
gram 2.

In Appendix C an analysis is presented for truncated conical shells
of constant thickness. Two numerical examples are included. In the first
example, a truncated semicircular conical segment supported and loaded in
the same manner as the segment considered in Appendix A was analyzed for
constant shell thickness. The computer program used for this analysis is
identified as Computer Program 3 in Appendix D. In the second example,

a conical frustum fixed at the small end and free at the large end was
analyzed for a moment applied at the free end. Computer Program L in
Appendix D was used in this analysis.

A paper titled "The Asymptotic Solutions of Conical Shells Subjected
to Lateral Ioads" by Chin Hao Chang containing the results presented in
Appendices A and C has been accepted for presentation at the Fifth United
States National Congress of Applied Mechanics to be held in Minneapolis,
Minnesota during June 1966. An abstract of this paper will be published
in the proceedings of the Congress.

Plastic Cylinders

The study of the feasibility of using small plastic cylinders in

investigations of cylindrical shell stability was undertaken to determine

2
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the nature of the problems encountered in fabricating and testing plastic
cylinders. Since one of the objectives of the study was to evaluate the
suitability of inexpensive cylinders for stability studies, a minimum of
special equipment waé used in the fabrication process. However, the fab-
rication procedure was designed to produce cylinders of uniform quality
within the limitations imposed by the expense criteria. The results ob-
tained in this investigation were not expected to be comprehensive enough
to establish the validity of existing theories or provide useful design
data. Since the progress report pertaining to this phase of the contract
was deemed unsatisfactory by the Contracting Officer's Technical Repre-
sentative, a number of revisions and additions were made in preparing the
final report based upon the general and specific comments of the Contract-
ing Officer's Technical Representative. These changes are incorporated

in Appendix E.

Integrally Stiffened Panels

A series of tests were conducted to determine the stress distribution
in three integrally stiffened panels instrumented with uniaxial strain
gages and rectangular strain rosettes. All of the experimental data and
a comparison of all of the experimental data with one theoretical analysis
are contained in Appendix F. 1In Appendix G, a portion of the experimental
data is analyzed in greater detail and compared with five different theo-
retical analyses.

The study of the stress distribution in integrally st !
is being continued under the terms of NASA Contract NAS8-2016l.
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Literature Survey

During the contract period, lists of published articles pertaining
to the contract subject matter and abstracts of certain articles were
submitted with monthly reports. This information is included in this re-
port as Appendix H.

CONCLUDING REMARKS

Each appendix of this report is itself a complete report. Therefore,

L




where appropriate, lists of symbols, discussions of results, lists of re-
ferences and conclusions are included in the individual appendices. In
order to reduce confusion, the tables, figures and references in each
appendix have been numbered to indicate the appendix in which they appear
rather than being numbered consecutively throughout the report.




APPENDIX A

ON CONICAL SHELLS OF LINEARLY VARYING THICKNESS
SUBJECTED TO LATERAL NORMAL LOADS

By Chin Hao Chang

the contents of this.appsndix were previously submitted as Progress Re-
port No. 1 for NASA Contract NASG-11155.



APPENDIX A

ON CONICAL SHELLS OF LINEARLY VARYING THICKNESS

SUBJECTED TO LATERAL NORMAL LOADS
By Chin Hao Chang:*
INTRODUCTION

The theory of conical shells of linearly varying thickness in the
framework of generalized plane stresses of linear theory of elasticity
along with a general approach for solving the basic equations has been
given in Reference [Al]l. The three homogeneous equilibrium equations
in terms of three displacement components were solved by the classic
method of separation of variables. In turn, these solutions depend up-
on an eighth degree characteristic equation.

The basic equations may be regarded as the result of series expan-
sions of the stresses and displacements in a parameter k which depends
on the ratio of the thickness to length. Only the terms of zero and
first order of k are retained in the expansions. In this paper, the
characteristic equation is presented in a different form than previous-
ly used and is solved by an approximate method that is consistent with
the theory.

Of the eight roots of the characteristic equation, four are real
and the other four are complex. When the parameter k approaches zero
asymptotically, it is found that the solution of the real roots corres-
ponds to membrane theory while that of the complex roots corresponds to
the bending effect. A general asymptotical solution is given including
eight undetermined constants.

Generally there would be no difficulties in obtaining the particular
solutions of the system due to lateral normal loads. However, when the

load is uniformly distributed along meridians, the solution is near a

*Associate Professor of Engineering Mechanics, University of Alabama
University, Alabama and Staff Associate for NASA Contract NAS8-11155.

INumbers in brackets designate references at the end of this appendix.
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singularity of the system. It is at a singularity for the asymptotical
solution. The particular solution for this case is given.

For illustration, the analysis is applied to a semicircular truncated
cone which has two generators simply supported, the smaller circular end
fixed and the other end free. It is shown that the bending effects are
confined to the neighborhood of the clamped edge as would be expected.

BASIC EQUATIONS

Let © and s be the circumferential and meridional coordinates
of the middle surface of an isotropic conical cone and u, v, w, be
the circumferential, meridional and normal displacement components, re-
| spectively. Outward w is positive. When the thickness of the shell
h 1is proportional to s and independent of ©, one has

h = gs (A1)
where § 1is a constant which for thin shells is very small. The elas-

tic law assumes the following relationships between the stress result-
ants and displacement components:?

N, =dfsv: + v (u' sec a + v + w tan a)-k s?w’'tan q]
Ng=.0[u' sec o + v+ wtana + Vg v

+ k(v tan a + w tan? a + w" sec? a + sw’) tan a)

=V 7 oam\
= LA + ' Al
| ng 3 [su u+ v' seec a (Ac)
g 2
+k (su” -u - X + —2 ) tan? a]
sin a sin a
{ 1 - v
= . + '
Nos o0 3 [su u+ v' sec a
.y .
+k (v' sec a + 2 - —=_) tan? al

sin a sin a

2Further details are given in Reference [1&]] .




Ms = Pks[s2w"" - sv' tan a + v (W gsec? a + sw® - u' sec a tan a)]

Mg =0ks(w" sec? a + sw + w tan? a + v tan a + ysgw "]

(A2)
Moo = k(1 - v) s[(sw'" - w') sec a - (su’ - u) tan al
Mgg = Qk(1 - v) s[(sw'” - w' + § v' tan a) sec a - % (su’ - u) tan al
in which Ns ceey MOs are stress resultants and stress moments per unit

length. The dots indicate partial differentiation with respect to s;
and the primes indicate partial differentiation with respect to ©; a
is the complement of the half central angle of the cone;

O
[

(A3)

. E6 N
0--1_—\’1 and k—l

N

where E is Young's modulus of elasticity and y is Poisson's ratio.
The six equations of equilibrium may be given in the following form:

(8N )" + N seca-N, = -P s
) s

Os

(sto)' + N'O sec a + N

N. tan a + Q'o sec a + (SQS)' = P!s

4]
(AL)
(sN%) M seca-M = SQS
‘aM ) + M' sec g + M. = SO
(sMsg) M'S sec MQS “:9
s(Ng, - N o) = My, tan a

where Qs and Qg are the transverse shear forces per unit length act-

ing on sections perpendicular to the s and © directions; Pr’ Ps,

and PO are surface loads per unit area in the normal, meridional and

circumferential directions respectively.

Dropping the last equation of (AL), which is an identity, and mak-
ing use of the fourth and fifth equations of (AL) to eliminate the trans-
verse shearing forces QS and Qg in the other three equations, the



resulting three equations of equilibrium are:

s(stJ + SN sec a + 8 NOs - (sMsg) tan a

e
- - ' = - 2
Mgs tan a M o tan o sec a PQS
. (45)
8 + N, ' - = - s
( Ns 08 sec a N0 Ps

sNo tan a + s(sMs) + (sM so) sec a + (sM Os) sec a

" 2 - « = 2
+ M0 sec? a sMo Prs
Substitution of the elastic law equations (A2) into equations (45)
results in the following equations of equilibrium in terms of the dis-
placements:

- . + ’e
1 3 Ys2u®® + u"sec?a + (1 - v)su® - (1 - v)u + 1 3 Ysv'*seca

+ (2 - v)v'seca + w'tanaseca + k[%(l - v)s2u® " tana

+ 3(1 - v)su " tana - 3(1 - v)u tana - 3 ; Ys2w'' " seca

POS
- 3(1 - v)sw' seca + 3(1 - v)w'secaltana = - ]5—
1 +

2

. 3 .o v
Ysu'*seca - 5(1 - v)u'seca + s3v + v''sec2a

+ 28v” - (1 - v)v + vsw tana - (1 - v)wtana (A6)

-V o 1 - v .
l-5-—-v"tanasec2a - vtana - s%w’° + 3 sw'"’ sec?a

+ k[

P s
- . )
- 382w°° - é—i—xw"secza - sw' - wtan?altana = - —

Q

secda

3 -v
2

[u'seca + vsv' + v + wtana]tana + k[- s2u

1 - v
2

tee

sec?a

- (3 + v)su'"seca + (3 - 5v)u'seca - &3v'" + sv

633v"" + (2 - v)v''sec?a - 7sv’ - v(1 - tan2a)]tana

L ]
- .e Iv R
k[sbw'® + 2s2w''"*sec?a + w 'secta + 853w " + ULsw''"sec3a

+

+ (11 + 3v)s?w”" + 2w'"tan2asec?a - (5 - 6v)w'sec2a
Prs

2(1 - 3v)sw - w(l - tan2a)tan3a] =

10



Consider a segment of cone bounded by © = 0 and Ql and s = L1
and L, L1<'L.: For convenience, a nondimensional variable y is intro-

duced such that

y=f§ | (A7)

Observations of equations (A6), shows that the displacement functions

may be assumed in the form:

- )\n -l .in nﬂQ
u= Ay cos g

=B yxn—l cos nud

<
|

n sin "o, (A8)
w=_C yxn—l cos nnd

n " 8in 9,

in whiech An, Bn’ Cn and Xn are constants to be determined.

The upper set of the sinusoidal functions in (A8) is for a complete cone
(G1 = 2;). The lower set is for a segment of cone with two simply sup-
ported generator edges so that, along © = 0 and o, <2;),

w=0, v=0, Ng = 0, and Mo =0

(A9)
The reactions along the two generator edges are given by
S = + M
e QO Os at 0 = 0 and 9, (A10)
- - \* =y

SO is the transverse shearing force at a section perpendicular to the
© direction. The shearing force Qg may be obtained from equations

(AL). In what follows the case in which only the lateral normal load

appears is considered.3 Thus
P0 = Ps =0
- cos DO .
and P =P _(y) sin O, (411)

3Nhen the other loads exist, one may follow a similar procedure
and by superposition obtain the appropriate solution.

}._J
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Substitution of the assumed displacements and loading functions in-
to equations (A6) yields

where

and

11

12

13

22

23

33

dllAn * d12Bn * d13Cn =0

dZIAn * d22Bn * d23Cn =0
- L 3 -n
dj A, * dy,B * 45,0 —cﬂpm(y)y (A12)

1 - v
8

(1 + 3ktan2a)(9 - xﬁ) + m?
+ %[(7 - 5v) + (1 + v)Xn]m

:[1 + %(3(9 - 11lv) + 8V ~ (3 -~ v)xgﬂmtana

1 - v

%(1 - X:) + (1 - v + %m2) + k tan2a(l + 3 m2)
1 (A13)
Etana[(Z - v) = Vi)
- %ktana[(l - Btan2a + 2(7 - 3v)m2)
- (34200 - VWD + Dy - AF]
tan2a + %gk[(lB - 12v) - 16 (1 - tan2a)tan3a
+ 8(11 - 12v - 4tan?a)m?® + 16mu
- 2(7-6v + 4w N2 + A}
= or
m = o, seca (a1ly)

The expressions for d21, d3l’ d32 are obtained by replacing ‘4 with ~

in d12, d13’ d23, respectively. The plus and minus signs which appear

in front of one term correspond to the upper and lower set of sinusoidal
functions henceforth.

In order to have non-trivial homogeneous solutions of the system of

equations (Al2), the determinant of the coefficients must vanish. This

12



results in an eighth degree characteristic equation for \pe Neglecting

the terms of second and higher power of k, as was done in the deriva-
tion of the elastic law (A2) yields the characteristic equation in the

following form:

o[ny - 1002+ 9] + & Dy - g6y * gux: - g+ g = O (125)
in which
G = 16(1 - v3)tan2a
€ = 4(7 - 4v) - Byvtan2a + 1622
g, = 2127 - 136v + 24y2
- 4(8 + 3v)tan2a + 8(4 - 3v2)tan4a]
+16[(17 - 12v) - 6tanZal u? - 96m"
g2 = 4[203 - 316v + 120v2
- 2(80 - 6lv)tan2c + 40(4 - 3v2)tanu1]
+16[(71 - 72v) - #(13 - 10v)tan2a
+ 8(2 - v)tanua] m? (A16)

64[(13 - 12v) - 2(4 - v)tan2a] mu + 256m6

+

gy = 913 - 12v)(5 - 4v) - 8(8 - 7v)tan2q + 16(4 - 3v2)tenaa]

+ 16[(215 - 412v + 192v2) + 2(89 - 172v + 96v2)tan3a
+ 40(2 - v)tan“a] m2
- 32[(81 - 184v + 96v2) + 4(16 - 13v)tan2q - 8tanua] m

+ 256[(3 - 4v) - 2tan2a] m6 + 256ms

In view of the approximation made in the derivation of equation (A15)
the following approximate method is suggested for solving this equation.
Introducing

4 2

‘h = Xno + thl

into equation (Al5) results in a sequence of equations associated with

(A17)

the various powers of k. The equations associated with the two lowest

13



powers of k are

2
xho - 1oxno *9=0
and
4 3 2

Xno - g6xno * 8 X T 82Xo T 80 * G, - S)an =0

from which

Xo land?9 (A18)
4 3 2
X = . Yo ~ 86 no €4%no - 82%n0 * €o
nl 2G(X -~ 5)
no (419)
Thus, one has two roots of an which are denoted by an and \ g
n
1 -g.*¢, -8, *¢g
2 _ 6 4 2 0
App 51tk 8
b3 2 | (420)
A,=90-k2 98 * 9%, - %, * g
8G

Substituting these roots into equation (415) yields a quadratic equation
in Xﬁ which gives

2 _ 1 32 _ 32
A E 2(g6 an A nl)
n3
4
{1 9G. 1 2 2 2
+ —— —_) - = - -
—‘j.z 7 & * %) - 38 - Mg~ Ayp)
IR
nl 'n2 (A21)

Hence the eight roots of A, are in two groups of four. One group of

four consists of real numbers while the other group of four consists of

complex numbers.
The next step is to solve for An and Bn in terms of Cn for

each root of Ay from any two of the homogeneous equations (A12). The
eight constants Cn shall be determined by eight conditions at y =/ ;E

and 1. The boundary conditions along the generator edges are satisfied
by the choice of sinusoidal functions of the angle ©. At the two cir-

cular edges one has the following four boundary conditions at each edge.

1l



For a built-in edge:

u=90, v=0, w=0andw =0

(A22)
For a free edge:
= M = S = =
Ns o, R 0, A 0 and Ts 0 (A23)
where
S © QS + 3 Msgseca
M
- Msq
Ts = ng - — tana (A2ly)

are the transverse and tangential shearing forces, respectively, acting

perpendicular to the s-direction. The shearing force QS can be obtained

from equations (AL). For a simply supported edge:

and

Gy

ASYMPTOTIC SOLUTIONS

As the parameter k approaches zero, the two groups of roots I

approach the following asymptotic values:

AN S, Ay =23
2 4 (426)
A = P(12i), Ty ==p(lti)
6 8 (A27)
where
1
Pz IJ—_—f(Ewl (428)

The subscript n has been and henceforth will be dropped for sim-

plicity,

15



When the first group of -, 2o (1 =1, 2, 3, and L) is substituted
into the first two equations of (Al2) to eliminate A, and B;, and

only the leading terms are retained, the solutions (A8) assume the fol-

lowing form:

C c C
1_ - (1 2 1,3,
u = + mtana lmz 1 " 3 - 2(1 = V) y? TRy
4 + L4y ~ m2 C =ip NTO
v n - } sin BTY
m2(7 - 2v - m )?ﬁ cos 8, (A29)
C
vl = tana acl + 2% L. —3-—3534-—- 1 {cos nré
me -1 m2 - 2(1 ~v) y2 m2 - 7 + 2v y¥ ) sin 01
I - —2 ~ 2 —Ll- cos Pﬂg
wo= {C1 PGy Gy Gy }sin 5

When the second group of 3, 2y (3 =5, 6, 7, and 8) is used, fol-

lowing a similar procedure, and using some identities to convert the

complex expressions into real expressions, the solutions are as follows:

uII =+ 2(2 + v)mtana%;y’l{yp[Cﬁc08(plny) - Cg sin(pfny)]

- Y-p[Cscos(plny) - C7sin(p¢ny)]} ggg ﬂ%%
vil = ytanedy™ § yPRC, - Codcos(pfny) + (C. + C)sin(plny)]

==V anasy {Y 5 6 pPE&ny 5 6 y
(A30)
- . 1 nn@

-y Plee, + cpdeos(plpy) - (C, - Cy) sin(plnyll} 98 %
wil = y"1 {yp[CScos(plny) + Cssin(plny)]

+ y"P[c7cos(plny) + Cssin(plny)]} gg: 5%%

It is noted that the solutions of the first group correspond to
those of membrane theory.
Based on the solutions (A29) and (A30), one may establish the orders

of magnitude of the displacement components™ as:

AE££ is assumed that the parameter m defined by (AlL) is limited
to small values such that differentiation with respect to © does not
affect the order of magnitude.

'._J
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(A31)

Due to uI s vI and WI ,» the magnitudes of the corresponding stresses

I I
NS’NQ

and Nog obtained by use of relations (42) are also of the order
of (%‘-o) and the moments are of the order of (g'?) and higher. The

order properties of the stresses due to uII, vII and W'l are not as
obvious and will be examined further in the discussion that follows.

Changing the variable s to y according to (A7) and then to

7 such that
l/P
Y ET (A32)
and neglecting the terms which are of the order of l3 and higher
p ’
the stress-displacement relations (A2) assume the following form:

1
N =¢0[§P'{V,,{ + v(u,oseca + v + w tana)]

Ny =¢0[(u,oseca + v + w tana) + %vp'qv,,(]

2
|

— 1 - vl
os = ng = 40—-2—[-5;3711,,( -u + v,gseca]
=) kL i1 2,2 21 L L
s =0 fgp [M2w,pq + (1 5) vy ] = ZPrwy - 3PV, tana
+ v(w, ..sec3q + & v,
' 00 2P TWy - u,osecatana)} (A33)
- 1
MO —QkL[w,_egsecza + Epf(w,,/ + wtan2a + vtana

+ l—‘i{pZ[r(zw),w + (1 - %)7 w/,(] - pqw,,(}]

= 1 1
Mo Lk - v)L[Epr,'(gseca - W, seca - ipnu,,z tana
+ utana]
- 1 1
MQs LkL(1 - v)[;pqw,vgseca - W, gseca - 2oy u,, tana
1
+ 7u tana + -‘1,2- v,gtana seca]
17



where a subscript preceded by a comma represents the appropriate
derivative,

When the displacements

u=u11=%2U
II 1
vV =yv ==V
P (A3L)
w=wII=w

are substituted into relationships (A33) and only the terms with the

lowest order of (%) are retained, the following relationships are ob-

tained:

I1 1
NS =°0[§'VIV,7( + v W tana]

1T _ 1
Ng =4[V tana + vy Vi ]
1T _ I _,1-v1l,l
Ngg = Ngg =473 5 [270,4 + Y, gseca]
m I =011 - vz)tanzal [n2w +7W,, ]
s 52 M"Woqq * |
(435)
II _ 11
Mo = vMs
M I = 2L(1 - v)t:amzal 1% seca
50 53 T %oy
in which the relation
k = l& (1 - v2) tan2a (A36)
p
obtained from expression (A28) has been used.
Note that the normal stresses, NSII and NOII, are of the same or-
der as that of NSI and NQI. It can be shown, however, that NgI and

NsII vanish identically. When only the terms of the lowest order of (;)
i

are retained, one has



’ ’ W =w +r w
I, 11 I
N = N N = = =
s s o] NO ? NsO NQs NsG (437)
B 6 ¢ 11 I1
M =M" M = *r = =
] s (4] Mé IsO MOs MsQ

By a similar comparison of order properties, one can show that the trans-

verse and tangential shearing forces defined by equations (A10) and (A2L)
are

) e s s Ts =T, = Neo (A38)

Thus, in the two sets of solutions, the membrane and bending effects are
coupled by the lateral deflection w and are not separable.

Using equations (A37), (A38) and (A3L) with the solutions (A29) and
(A30), the stresses and moments may be given in the following final ex-
plicit form:

C2 3C

-2 4
T 2(1 - Y mZ - 7 + 297

N = - 2B tana [mz ‘“] cos nré

sin 91

2
h

o Eéy—ltana{yp[cscos(p[ny) + Cssin(plny)]

+ y-p[C7cos(pZny) + Casin(p[ny)]} cos nnd

sin Q1

- = 6tanc -4 . o

N =1 = u8 J c v~ %) sin nné
s0 s Y i nmE - 7 2v) 47 f cos 8,

ES . .
M, = 253 tan2a Ly {yp[06cos(p[ny) - Cgsin(plny)]
7-P - -~ 1 - , cos nng
+y Lscos(plhy) C7SLn(pRny)]) sin —EI
Mg = vMs
- 2ES

' . . -1 . . .
SQ = .55 n(2 ~ v)tanlay f yp[L6cos(p[ny) - C551n(p/ny)]

-
N v Cosin(clny sin DO
y 7 bsgos(p[ny) C751n(ﬁf1))] } cog )

1 (A39)
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S = E% tan?gy'l {yp[( - C5 - C6)cos(p[ny) - (C5 + C6)sin(pfny)]

- . L . cos nng
ty P[(C7+ Cs)cos(o[ny) - (¢, - CB)Sln(p[ny)l}sin _5;
and
u_ aull
3s as
= L

2pr—3 {ypKCS + C6)cos(p[ny) - (C5 - C6)sin(plny)]

- . no
-y P [(C7 - Cs)cos(plny) +(C, + CS)SLn(p(ny)]} ggg Ea;

PARTTICULAR SOLUTIONS DUE TO LATERAL NORMAL LOADS

Let the lateral normal load given by (All) be expressed in the form

Prn(y) anLB'y2B

(ALO)

Pm(s) = ans[3

where a and f are prescribed.

One may assume a set of particular solutions in a form similar to

expressions (A8) except that in this case *n shall be replaced by

= ZB + 3 (Ahl)

a known number. The particular solutions are readily obtained by solving
simultaneously the three algebraic equations (A12) provided that ~# is
not one of the roots of the determinant. However, in one of the most
common loadings, the load is uniformly distributed along meridians so
that B = 0. Hence 3% = 3 which is one of the roots for the asymptotic
case. In this case, the approach must be modified. In what follows the
particular solution due to this type of uniform load is given.

Since in this case 1+ is a finite constant when the parameter k

approaches zero, the corresponding particular solution may be obtained

20



from the equations of membrane theory for the system.
Setting k = O and transforming the independent variable s to

¥, equations (A6) reduce to the following equations of equilibrium from

membrane theory for a lateral load Pr:

1 - v 1 + v
[yzu,yy + 3yu,y - 8u] + ——Ef—yu,gyseca + u,oesecza

8
+ (2 - v)v,gseca * W, secc tana = 0
(Ak2)
1 + v 3 12 3
g U g seca - 5(1 - v)u,gseca * 5y Vi gy + oy
+ l—%—-‘iv,gosecza - (1 - Vv + %vw,ytana - (1 - vjwtana = 0
1 = L 2
UrgSecs T Vi TV T whand = pmn ey
where
P = a COSs 2119
r n sin 0 (AL3)

3

Iet the particular solutions of equations (AL2) be assumed as fol-

lows:
P - - . 2 s51n nwg
u = f(dl . dzlny)y eos _6;
v oy ¢ by tyiye oe 200
Dl .
1 (4aldy)
P = nnoe
= 2 cos DIY
v el(1 * Inydy sin 91

in which d d2, bl’ b, and e, are constants to be determined. When

1’ 2 1
these assumed solutions are substituted into equations (AL2) and the

sinusoidal functions and y2 are cancelled, the three equations are in

the following form:

' +p, = 2o L
Egly * by = Grne T P03 (A3)



where the subscript - (- =1, 2, 3) indicates the three equations of
(AL42) respectively, fq) and h  are expressions of ths physical constants
®

that are to be determined, and §3 i3 tiwe Xronecker delta.

By equating the coefficients of both sides of equations (ALS), two
sets of algebraic equations are obtained. Each set contains three equa-
tions of the form

fd) =0
(ALS)

_ 8 L
hy = Tanag 093 (A47)

a
There are, however, only two of equations (AL6) that are independent
because % = 3 is one of the roots of the determinant. Thus the five
constants may be determined by the five independent equations of (ALG)
and (AL7). The results are:

w72 LB {—Lg [2mu - 3(5 - v)m? - 3(1 + v)]

tana E5 3 | 2m
1 e
+(m? - 7 + 2v)fay }y2 Sin BE2
} cO8 91 (ALlB)

P a L 1 nno

= <l = = - - m2]y2 cos DY

v tana E6 6 (30 2v) n?}y sin Gl
p_a L1l ,r, cos 2 nno
¥ T fan%qa E6 3 O [w2 - 7+ 2v]1 + Lny) sin? Gl

When these displacements are substituted into the expressions (A2) with

k = O the corresponding stresses are

N F= SpL {l (3 - m2)y2} cos nne

s tana sin Ql
NP=anL "2] cos%

) Tana [y sin "1 (AL9)
L - [’m 2Js1nﬁ

s tana cos
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These particular solutions combined with those given by solutions (429),
(A30) and (A39) constitute the complete solutions.

NUMERICAL EXAMPLE

For the purpose of illustration, consider a truncated semicircular
cone with the two generators simply supported. The lower set of solu-
tions (A29), (A30), (A39), (AL8) and (AL9) apply in this case. ILet the
cone be clamped at the smaller end where s = L1 and free at the other

end where s =1, so that

aw Ly
= = = = = 0 =] —
u vV=E=w 38 at vy }

N =T =M =8 =90 at y =1

(450)

By making use of the first two in each of the preceding two sets of

boundary conditions, the constants Cl’ C2’ 03 and Ch can be determined.

The other four constants can then be determined by the remaining four
boundary conditions.

The lateral normal loads are also known as wind loads. Usually
there are two types of such loads: symmetrical and non-symmetrical.
Since the asymptotic solutions are valid only for small values of n,
only the two cerses of n=1 and n =2 are considered.

Let

an = p for n =1

(A1)

=0 for n> 1

so that
Pr = p s8in@

represents a symmetrical load. For

Ay _
a = 913 p forn =1

= §f§ p for n = 2

=0 for n > 2

23



so that

P_= g]ﬁ"p(sing + % sin 28) (A52)

represents a non-symmetrical load. These two types of loads are shown
in Figure Al.

For the numerical computations, the following values were assumed:

1 1
a = 75°, Vo= - [—— = 0.90
3 L (453)
Considering % as a parameter where R 1is the principal radius at a
section of thickness t, g = % cosa. The eight roots of -~ computed

from expressions (A20), (A421) (A26), and (A27) are listed in Table Al.
Comparison of the values of the roots for n =1 and n =2 with the
asymptotic values shows that, for this case, the asymptotic results are
satisfactory for practical use.

The asymptotic solutions for displacements, stresses and moments
computed from expressions (429), (430) and (A39) combined with (ALB) and
(AL9) may be given in the form:

P (y,0) = £ (y) sin D0 for n =1 and 2 (451.)

08 91

The function f (y) is plotted in Figures A2 through All.
CLOSING REMARKS

There are a number of approaches available for obtaining solutions
for shells of revolution. Kalnins {Aﬂ obtained a solution by treating
the system of equations as a series of initial-value problems and in-
cluded a conprehensive bibliography. Conical shells subjected to edge
loads were studied by Clark and Garibotti [Aﬂ by using the edge effect
approach.

The solutions presented in this appendix are in explicit form and

are readily used for practical purposes. The asymptotic solutions are

2L



exact and applicable to conical shells if

1
% (% cosa)_z] * < 1.

When the above parameter is very small the symptotic solutions may be
useful for conical shells of both linearly varying thickness and constant
thickness.

In the numerical example, the bending effects diminish rapidly as
the distance from the clamped edge increases. This is known as the edge
effect or boundary layer phenomenon. The moments and shearing forces
due to the bending effect are of higher order than the membrane stresses.

However, the membrane stress N, induced by the bending effect is of

e
the same order as the other membrane stresses. Therefore, solutions ob-
tained by the membrane theory alone not only are incompatiable but also

contain some errors that are not negligible for the membrane stress Ng.

The deflection, particularly the normal component at the free end,
in the given example is large compared to the thickness. For such a
large displacement, the theory is applicable provided that the shell is
not overstrained @ﬂ] . Thus the strain at the fixed end controls the
validity of the results.
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APPENDIX B

THE THERMAL EFFECT ON CONICAL SHELLS
OF LINEARLY VARYING THICKNESS

By Chin Hao Chang

The contents of this appendix were previously submitted as Progress Re-
port No. 2 for NASA Contract NAS8-11155.
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APPENDIX B

THE THERMAL EFFECT ON CONICAL SHELLS

OF LINEARLY VARYTING THICKNESS

By Chin Hao Chang*

SUMMARY

A study of an isotropic conical shell of linearly varying thickness
under a surface temperature was made in which the thermal effect on the
shell was represented by an equivalent load. Asymptotic particular so-
lutions due to the thermal load were obtained. These solutions may be
combined with the complementary solutions of the shell obtained in Ap-
pendix A to constitute a set of complete solutions. A numerical example
of a semicircular cone frustum subjected to temperature functions that
are constant along the meridians and have a sinusoidal distribution in

the circumferential direction is given.

INTRODUCTION

Analytical solutions of conical shells including thermal effect are
not generally available. In this appendix an asymptotic solution of an
isotropic conical shell with linearly varying thickness that includes
the thermal effect was obtained by following the method developed in Ap-
pendix A in which the basic equations and the complémentary solutions of
these equations are given. These solutions are applied here without any
alteration and the particular solution of the system of equations due to
a thermal effect is obtained.

The thermal effect may be represented by an equivalent load which
will be referred to as a thermal load. The thermal load is derived in
the next section. The derivation considers a shell of revolution that,
in general, has two principal curvatures in two respective membrane di=

rections. ILetting one of the two curvatures vanish and specifying the

*Associate Professor of Engineering Mechanics, University of Alabama,
University, Alabama and Staff Associate for NASA Contract NAS8-11155.
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other, the thermal load for a conical shell is obtained. This thermal
load has components in all three directions of the reference coordinates
used.

The temperature distribution considered is assumed to be a linear
function of the normal coordinate and an arbitrary function of the two
membrane coordinates. This type of temperature distribution is common-
1y used in shell theory as was the case for cylindrical shells in [?ﬂ 1.

It is shown in this appendix that, for asymptotic solutions, the
temperature variation in the normal direction is negligible. The asymp-
totic solutions are discussed. The solutions for the particular case
of a constant temperature distribution along the meridians of the coni-
cal shell and a sinusoidal distribution in the circumferential direction

are presented. Combining these solutions with the complementary solu-

tions of the shell obtained in Appendix A, a numerical example of a semi-
circular cone frustum is given. The displacements, stress resultants
and stress couples of the cone frustum are presented graphically. It
was found that the effect of this type of thermal load is similar to

the effect due to a lateral normal load.

THERMAL IOADS

Let & and © be a set of orthogonal curvilinear coordinates de-
scribing the middle surface of a shell of revolution with a set of prin-

cipal radii r@ and r,. When the classical Duhamel-Newmann law of

e
thermoelasticity EB% is used, the stresses, strains and temperature are
related as follows:

E
o_= e *ve. - (l'*v)ﬁf]
@ 1_\)2 [ @ ©
E . ! (B1)
On = +ve - (l'*v)B?]
e 1~J2 [}9 3
%Qg - =— 0
e oty 9

INumbers in brackets designate references at the end of this appendix.
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where c@ and Oy are normal stresses, 5@ and sg are normal strains

in the « and @ directions, %9 and EQB are shearing stress and
oy (i

sffain fespectively, T is a fempéréture function and £ 1is the coef-
ficient of linear expansion.®

In what follows the relations for that portion of the stresses as-
sociated with the temperature function T only will be considered be-
cause those for the other loads are assumed to be known. The additional

stresses due to T may be expressed in the form:

T E
o, = - 1o Ma» 0, 2)
(B2)
E
in which
T(s, 9, 2) = T (&, 0) + z T, (g, ©) (B3)

where the coordinate 2z is in the normal direction of the middle sur-

face, positive outward. The corresponding membrane :stress resultants

per unit length N@?, N T and stress couples per unit length M@T,

(2]
MOT due to the stresses (B2) are defined by

t/2 t/2
T T z T T 2
NCID = j Gq’ (1+ r—g)dz, Ny = f % (1+ -I-'—)dz
-t/2 -t/2 ®
(BL)
t/2 t/2

T - T Z ’_[‘_= T z_
M - j op (1t lada,  Mls - f ool (1+ r@)dz
-t/2 -t/2

and may be expressed in the following form:

T_ Ty 2
Nq; l'\)B [ Ty 12

2Symbols other than those defined in this appendix are the same as
those used in Appendix A.
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%

"ﬁlHl-B
ct
(Rl

T Et
No = - 1P Ero+

3
T 4,2
T. EB oL
Mo = 15 [Tl T ¥ _] ) (B5)
3
T .2
T_ Ep Tot
Mo = 155 |0 ? rg]ﬁ

The foregoing expressions may be converted into those for conical
shells by letting

rg =00, 0=aqa, r9=scota (B6)
and the results are
2 T
T Et t 1
Vs =~ 157° [To+i'2 5 e
T_ Bt
Ng - I [To]
(B7)
S ]
MS =21 L-; tanag + T1

3
T_ Ep b
M =1 1 [Tl]

For conical shells with linearly varying thickness, t = gs, and

expressions (B7) become

v T-_ BB [Tos + kT152 tana]



S

-
MT- EBS x Tsztana+Ts3] . (B8)
s 1~y _ o 1
T
EBs [ o3
Mo = I K _Tls]
2
where k = §—2 When these stress resultants and couples are substituted
into equilibrium equations (AL) of Appendix A and the additional terms
T T T

are denoted by PS s Pr and Pg , one has

T T, T
Pg™ = (sNg ) - No
= - EBs T ’52+T s+3KT szt,a.na + kT '53 tana
1-v o) o 1 1
T_ T Tve . 2, Tye.
Pr sNy~ tana + 2s(MS )" + s (Ms )
-_ Bafr 2 T b 3
- I {Tos tana - k L(s T_l + 8s Tl + 12s Tl)
+(sl‘l T + 655 T + 6s2T ) ta.na]} (B9)
o 0 o
T = T 9 T s
P9 s(l\Ig )’ sec a -(Mg )’ tana seca

E e EEQ 2 3
T [(s To’) + le s” tan a] sec a

The above three expressions may be considered as the three components
of the thermal load in the respective directions.




ASYMPTOTIC SOLUTIONS

Tt was shown in Appendix A that, for thin shells, the asymptotic
solutions are pertinent for practical purposes. In what follows, asymp-
totic particular solutions of the shell due to the thermal load will be
obtained.

Retaining the terms of the lowest order of k, the thermal loads
(B9) are simplified to the following form:

E .
PT - "EQ.E.‘52+Ts]
0 o)

s 1-v

PT=-§E§[TS tana] (B10)

r 1

T _ BB [2p
Pg - I [s To sec a]

Note that the temperature function T, 1is not involved in these expres-

1
sions.

For asymptotic solutions, the set of membrane equations may be used.
Using the dimensionless variable y :as the independent variable to re-

place s, the three equilibrium equations of membrane heory including;
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=
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b(l

- ~mdem . PR PR,
the thermal loads {B1l0) were obtained

A as:

1w 1+v 2
- [ Yoy + 3yu,y - 8u] T T4sq, Seca * U,5, Seca

+ (2‘-\")v,g sec a + W,y Seca tana = (1+v)BL :)rZTO’g seca

(B11)

1+ 1l 2
- yu,gy seca - g(_l-v)u,o seca + [y Voyy + ﬁ- Vs

L2




1l-v

* 5 Vago secza - (1-v)v + % vyw,y tana - (1-v)w tana

2
(1#v)p Ly [é'y Toy * TCJ

u,q seca * %‘vyv,y +v+wtana= (1) L y2 T, tan a

Let
T = Qyty 08 n® (B12)
o n sin 01

where Qn and w, are prescribed constants presumably real and finite.
The particular solutions of equations (Bll) may be assumed in the fol-

lowing form:

T ML osin ny0
U = A y‘ —a
n' cos 91

V' =3B = (B13)

T ML ocos nn®
ny sin ©

_* _l
wT - Cny}n cos nn@

sin Ol

in which coefficients An, Bn and Cn are to be determined. On substi-

tuting expressions (B12) and (B13) for equations (Bll), factoring out the

sinusoidal functions and setting

X =

3¢ +
" (BLL)
three linear algebraic equations are obtained for the three unknowns An’

Bn and Cn. These equations can be solved by Cramer's rule provided
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| that ): does not make the determinant of the equations vanish. When
o, = 0, )\;L = 3 1is one of the roots which will make the determinant van-

ish as has been shown in Appendix A. Physically this represents the case
in which the temperature is constant along meridians. In this case the
solutions are obtained by the same method as was used for the lateral
normal uniform load in Appendix A.

Let

T, 2 sin nn®

U [dl td, lny] Y cos Tl
T _ 2 cos 1_122

vV=by - -3 (B15)

1

T . 2 cos nn®

W c(l + 1ny) ¥ oin 91

in which dl’ d2 » b and ¢ are constants to be determined. When the as-

sumed solutions (B15) combined with (B12) are substituted into equations
(B11), the constants are:

mpLQ _

4 =F 3 == i(1+3v) - (5-v)tana - [% w2 - :?- (1+v‘)] (i-tana)
d, = %mf-l—::n (1 + Ly - m2) - tan a(7 - 2v - m2) (B16)
b=% E‘I;Qn l—tana+r—r-1§ [tana (l-2‘v)+]]

¢ = t_I:-;l_a d2




The corresponding stress resultants due to the thermal loads are
readily obtained by use of the elastic law. The results are:

nTa- Es [Fl = V)b - (e, - d2{] y2 cos nno

s 1_\)2 sin 91

T_ E - . 2 cos nm°
Ng —:;% v(l +v)b - m(dl - d2)] Y ain gl (B17)

T, E 2 sin ni@
Ts E31+y$ [d2 * 2mb] J cos a]

1

The stress couples induced by such thermal loads are of higher order
and may be neglected. Combining the solutions (BllL) and (B17) with the
complementary solutions obtained in Appendix A the complete solutions
are obtained for this case.

NUMERICAL EXAMPLE
Consider the semicircular truncated cone with two generators simply

supported, the smaller circular end fixed and the other end free that

was discussed in Appendix A. As in Appendix A, the following parameters

and / ;—j; = 0.90 (B18)

Numerical results for n=1 and 2 were computed that can be used for

are assumed:

a= 750’ V =

wil -

symmetrical and asymmetrical distributions of temperature similar to the

distribution of wind loads discussed in Appendix A. The results are given
in the form

sin nn@

cos 01

Fn(y,O) = fn(y) n=1and 2 (B19)

L5



in which the function fn(y) are presented in Figures Bl through B10

for %= 0.00L, 0.006 and 0.008.
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APPENDIX C

AN ASYMPTOTIC SOLUTION OF CONICAIL SHELLS
OF CONSTANT THICKNESS

By Chin Hao Chang

The contents of this appendix were previously submitted as a part of
Progress Report No. 6 for NASA Contract NAS8-11155.
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APPENDIX C

AN ASYMPTOTIC SOLUTION OF CONICAL SHELLS OF

CONSTANT THICKNESS
By Chin Hao Chang:¢
SUMMARY

A solution of truncated conical shells of constant thickness is ob-
tained as the ratio of the thickness to the radius at the larger end goes

to zero asymptotically by separating the solution into two parts:
brane and bending.

ment.

mem-
These two parts are coupled by the lateral displace-
A particular solution due to lateral normal loads is also given

and two numerical expmples are presented. One numerical example consid-

ers a semicircular shell segment with the smaller end fixed, the other
end free and the two generator edges simply supported. The shell is
subjected to a lateral normal load which is constant in the meridional

direction and varies sinusoidally in the circumferential direction. The

other numerical example considers a cantilevered complete cone with the

larger end free. A rigid plate is attached to the free end and a moment

is applied. Comparisons with other available results are given in both

examples.

INTRODUCTION

Concial shells of constant thickness have been studied by a number

of investigators. The axial symmetrical solutions of such a shell have

been well established BH” C?] 1; while for asymmetrical cases the solu-

tions have been approached two different ways. One approach uses the

method of power series @2, C3 and CLEI » while the other treats the mem-

brane and bending solutions separately. It has been found that, by

*Associate Professor of Engineering Mechanics, University of Ala-
bama, University, Alabama and Staff Associate for NASA Contract NAS8-11155.

INumbers in brackets designate references at the end of this appendix.
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keeping the first order terms only, the bending solutions are in the
form of Bessel functions [(5.5] . In reference [CS] s> by recognizing the
rapid decay of the bending solutions near edges, an edge-zone solution
was also presented to replace the solutions of Bessel fubctions. The
power series approach was not recommended by several researchers [Cg,
E:ﬂ because of slow convergence.

It was found in Appendix A that, for conical shells of linearly
varying thickness, the solution consists of two parts: membrane and
bending effect. Both parts are expressed as polynomial functions of y7‘
as far as the y-function is concerned, where y is a dimensionless vari-
able of length measured in the meridional direction and the ) 's are
real constants for the membrane solutions and complex numbers for the
solutions of bending effect. Furthermore, the A's of the membrane
solutions will approach finite values while those of the bending solu-
tions will become infinite as the ratio of the thickness of shell to
the radius at a section approaches zero. These different characteristics
of the two parts of the solutions enables them to be treated separately.

Since conical shells of linearly varying thickness and those of
constant thickness will behave alike when the ratio of thickness to ra-
dius is very small, in this report an asymptotic solution of conical
shells of constant thickness is obtained by assuming that the solution
possesses characteristics similar to the solution for conical shells of
linearly varying thickness. The asymptotic solution obtained includeé
the particular solution due to a lateral normal load. Two numerical ex-
amples are also given. One is for a semi-circular cone frustum similar
to the one given in Appendix A. This example is designed to compare the
results for the same shell with different types of thickness. The other
is a complete cone frustum with the smaller circular end fixed and the
other end free. At the free end a rigid plate is attached and a moment
is applied. A solution for the latter example is available in E)SJ S0
that a comparison can be made between the two solutions.

BASIC EQUATIONS

A set of exact equations for shells of revolution of isotropic and
elastic material within the framework of generalized plane stresses of
linear theory of elasticity is given in explicit form in Reference rgJ_] .
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For thin shells, using the approximations ry + z™ Ty and r, + z="r2

where ry and r, are two principal radii of the middle surface of the

shells and 2z 1is the normal distance measured from the middle surface
to a generic point, the elastic relations between stress resultants,
couples and displacements are simplified considerably. For a conical

shell these relations are:

D 1 1 .
= = - = + ! + +
Ns L 2 [2yv v(u'sec e + v+ w tan a)]
y
D1 . v .
T e —— + + +_.
Ne L 2[u seca tv+wtana 2yv]
y
D1-v 1 '1 .
= S e —— — —_— - <+ !
Nse NBs L 2 y2 [2 yu ut+v' sec a]

(c1)

2 . 2 1 .
M_ = Dk —i—[i(y w' ' -yw’) +tv (w' sec e+ yw)

1 . 2 .. .
M, = Dk—%[w"secza+—yw +4£(y w - yw))

e 2
y
M =M = Dk (1 -u)‘l'[lyw" sec a - w' sec a]
s0 fs y4 2

in which NS gesey MsO are the normal and shearing stress resultants

and couples in the directions indicated by the subscripts and y =/ %

The s and @ are meridional and circumferential coordinates of the
middle surface of the shell; wu, v, and w are the circumferential, mer-
idional and normal displacements, respectively. Outward w is positive.
D and k are defined as follows:

. _E 1t 1 t.2
D > and k = 12() = 12(E) cos a (c2)



where E is Young's modulus of elasticity,
is thickness,

shell,

vy 1is Poisson's ratio, t
L 1is the length from the apex to the larger end of the

R =L cos ¢ 1is the radius of the shell at y = 1, and the a is

the base angle of the shell. The dots indicate partial differentiation

with respect to y and the primes indicate partial differentiation with
respect to ©.
When the equation of equilibrium of moments about the normal of a

surface element is overlooked, the other five equations are:

B 2
_yNs+Ns+N'Bsseca -Ne = PSLy
L N' +2N _+N'seca -Q_ tane = 'PL.Y2
2 “Vse s0 e e 8
l1/Q +Q +Q.seca +N tana = P Lyz (c3)
2 y s s (] e r
1 M '+M +M! seca -M, = Ly2Q
2 Y s s fs 0 5

2
+ 2M + M! seca = LyQQ
s

2 Y Mg 8 8

e

where Qs and Qg are the transverse shear forces per unit length act-

ing on sections perpendicular to the s- and ©- directions; Pr’ Ps’

and Pg are surface loads per unit area in normal, meridional, and cir-

cumferential directions, respectively.

The eleven equations in (Cl) and (C3) govern the eleven unknowns in-

volved. When the last two moment equations of (C3) are used to eliminate
the transverse shearing forces Q_  and QO in the second and third e-

quations of (C3), the first three equations of (C3) become
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';-yNé+NS+NéS seca - Ny = -PSLy2
1 . ! 1 1
EyNSO+2Ns9+N9 sec a '_5[53' Méeﬂ“Mse"*-Mes tan a
Ly
9 (cl)
+Mbtana sec a] = -PeLy

1 1 2
Netana +———E[Zy

. 3 .
+ 2 : :
Ly M+ yM o+ yM o+ 2 M g) sec a

8

1" 2 1 . - 2
+M9sec a _EyMBJ = PrLy

Substituting equations (Cl) into (CL), three equations for three unknown
displacements are obtained. In what follows, instead of dealing with
these three displacements, each displacement will be divided into three
parts: the first part is due to membrane action, the second part is due
to the bending effects and the third, the last part, is for the partic-
ular solutions due to lateral normal loads. Denoting these three parts
by superscripts I, II, and P, respectively, the displacements may be ex-
pressed as

u = uI+uH+uP
RS SV S S (c3)
w = WI+WH+W

These three parts of solution will be discussed in the following sections.

MEMBRANE SOLUTIONS

The membrane solutions of conical shells of constant thickness are

well known. However, available solutions are presented in forms of stress

only. In what follows, the displacements will be obtained.
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When equations (Cl) with k = 0 are substituted into equations (ClL),
the three equations become

1-v 2 .,  1-v . 1-v 2 1ty
— + - — + 1" =2 .
g v u g yu 2uuseca+4yv’seca
§;Uv'seca+w't = -iL2 4P
+ o an e sec a D y Py
1+ . 3- -
Tuyu' seca-——z—vu' seca+i[y2v"+yv']+-1—é—vv” sec? a
(cé)
U . 1 2 4
-v + = - = - =
v 2wtana W tan a DLyPs
1 .24
u'sece tv+wt +>yv o= =
¢ *v+wtan a 5 yv I)IJ yPr
Assume
u = A A sinnw®
cos 0
1
_ A cos nmw 6 ~
v = B sin 8 (C7)
1
w = A cosnm@
sin 91

where 3 is an unknown constant; Ol is the central angle between two

generators. Substitution of equations (C7) into the homogeneous part of
equations (C6) and cancelling out the y and sinusoidal functions , one
has three homogeneous algebraic equations for three unknown constants A,
B, and C. Ietting the determinant of the equations vanish in order to

have nontrival solutions, results in the following characteristic equa-
tion for -




AZ(A%-4) =0 (c8)

When the values of ; are determined and substituted back into the al-
gebraic equations one may express the constants A and B in terms of C.

This gives the first part of the solutions of the displacements as fol-

lows:-
I -1 2 1-v 2
u = +—n—1-{ ’;‘ [C (— — - 4ny) Gyl + Cyy
m -1 2(m -1)
2 .
m -2(1+v) -2y sin nnO
* 2 C4 }cos 0
m -4 1
(Cc9)
2
- 2 -2y cos nno
v ={ 510y - (R LGyl + 5 ¢ }sin 0
m -1 2(m -1) m -4 1
I 1 2 -2 )1cos nu@
= + + S
w tan a{cl * C2 lny C3 y C4y } sin 91
where
m = 2l geca
0
1
The corresponding stresses may be obtained from (Cl) as
I _ Et 1 -2 2 -4) cosnwo
N = = —_— _ i
S L{ 2 C2¥ 2_, 4 } sin 0
2(m™ -1) m -4 1
(c10)
I _ -Et 2 -4 sin nm @
e e e . — —_—
N89 L C

y
m(m2—4) 4 cos Bl

I . .
N g vVanishes identically.



BENDING EFFECT SOLUTION

It was shown in Appendix A that the displacement functions due to
bending may be assumed in the following form:

where

onm_ 1
us = U
Y
(c11)
VH -1 v
Y
WH = W
y4 = lkﬁ (c12)

Thus ¥—+eo as t/R+0. Furthermore, the y-function of U, V, and W may

be expressed in forms of yCY where is a finite constant. Thus the

c
differentiations with respect to y will change the orders of magnitude

of the functions concerned. In order tc avoid this , & new variable T
is introduced such that
- .Y
n =y (Cc13)

When expressions (Cl1) and (C13) are substituted into the elastic rela-
tions (Cl), retaining only the terms of the lowest order of 1 , yields
~

< |00

D .1
= eme [ — +
N I[2nv’n v Wtan e n

-2
Y
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D1-v1 1
= = = vl Y ,. tV,,]secaea
Neg™ Nos "L 2 2 U TVl n
_4 (c1k)
4 Y
= _— W, +n W,
M_ = D—5I[n an 7 1 n
Y
M6= UMs
L4
M _ = M = D—8(1‘U)W, sec @ * M Y
s0 Os Y3 on

Transforming the variable y to m and making use of the asymp-
totic expressions (Cll), the homogeneous part of equations (CL), when
only the terms of the lowest order of 1 are retained, the following

v
three equations are obtained:
T}2V +nV +2un W tanae = 0
" 'n .M (C15a)
11-v 2
1 2 [n U,Tm+nU, + 27 V,e sec a|]
1 (C15b)
+[W, tane += v v seca = 0
L ’e 2 L} )gnj
and
4 3 2
’ + W, +7n W, + s
a0 1 nw
4
o Y 1 i}
n ' [W tan a+*2—vnV,ntana]-0
Since
4
nY¥ ~1 as Y -+



the last equation becomes

3
W, + 6y W, +7'r]2W, +n W, +Wtan2a
nnnn nnmn nn n

(C15¢)

1
+ = Vv =
zvn ,ntana 0

The integration of equation (Cl5a) with respect to ™ results in

’ﬂV,n = -2uvWtana (C16)

in which, without loss of generality, an integration constant has been
dropped. Substitution of (C16) into equation (Cl5c) yields

4 3 2
W, + 6 W, + 7 W, +n W,
1 nmnn 1 nmn 1 nn 1 n
(c17)
2 2, _
+Wtan e (1-v7) = 0
Assuming
_ 1 = 5 cosnr8
w tan a Cn sin 91 ' (c18)
equation (CLl7) results in a characteristic equation
4 &
AT+ (l-uz) tana = 0 (C19)
which gives
A= taql(lti) (c20y
where
20 2 X [3
= - 4 =
a = [[1-v") tan® o | (c21)
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Letting

x cos nT @

v.: Bn sin ©

1

(C22)
U = Xn" sin nn@
cos 0
1
and making use of equations (Cl16) and (C15b)
- -2
— 4 (c23)
A=+ = @)m C
A

where A, B, and C are complex numbers. When the identity
n' = cos (fn n) +i sin (£nn)

is used and the complex numbers are transformed to real numbers, one

has
_ q .
W = tan a{n [C5 cos (q /nn) + C6 sin(q/Znn)]
-q ... ; . ., - 1 O
+n 1 [L7 Cos(q[nn) + L'8 s1n (q c'n-q”} CSC;ISI %1—
R | .
v o= - q {'ﬂ [(C5-C6) cos(qfnn) + (C5 + Cg) sin (q /nn))]
(c2L)
-n 4 + + _ . cos nm O
n [(C7 C8)cos(q[nn) (C8 C7)sm(q[nn)]} sin 0,
— 2(2+
U = +_(_L2)m{nq[cﬁ cos(qlnn) - C5 sin(qlnn)]
q
-7 A [C cos(qlnn) -C sm(lnn)] Sin w8
8 7 os 9
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Expressing in terms of the varlable y and denoting
yq = § (c25)

the solutions given in (C11l) and the induced stress forces and couples
obtained from (CllL) assume the following final forms:

- 2 ol + i

w tan a {y lC5 Cos(f[ny) CG sin(p Iny)]
* ‘f[C cos(p €ny) + C, sin(p ¢ny)] cos nr @
g 7 Y 8 S sin 91

II _ v

v $ Y1

II _ —2(2+u)m
NI <o

s

(c26)

II _ Et o1

Ng T L tan ¢ w >
Yy

II 2Et 1

MS 02 tan a 4Y2
J y

MII - uMH

8 s

II - 2(1‘1)) 1 53 ,
=t T — + Ao Lo

Msg f3 m tan a y4 {y [(C5 C6) COs(any)

+ (CG-CS)sin(j’lny)] 'y-f[(C,?-‘Ca)cos(f Iny)

cos nr 8

*(Cg C7)sin(f ﬁny)]} in ©
1



m_ Et 11
Ss = Ltanaf 2 ¥y
y
II T Et 1 1
S = +—=—2((2-v)—5 mtane S Y
2 4 ~2
e L _f y
where
Y, *© yf[(C6~C5) cos(p £ny) - (C,*+Cc)sin(p £ny)]
+ }'—’P[(Cgﬁ“C,Y)cos(j3 {ny) + (C8~C7)sm(f[ny)]
Y, © yj,[C6 cos(p Iny) - Ce sin(p £ny)]

‘y-fiCS costp Iny) - C, sin(j’fny)]

A PARTICULAR SOLUTION

Consider a conical shell subjected to a lateral normal load which

is constant along the meridians and has a sinusoidal distribution in the

. circumferential direction. This was the case treated in Appendix A. The

set of equations (C6) of membrane theory may be used for the particular
solution.

Let
Pe = PS =0
(ca27)
P cqs nr o
r n sin 9



. y4 cos nm 6 (C28)
2 sin 91
P - 4 cos nr@
v 39 sin 91

where dl’ d2 , and d., are coefficients to be determined by the substi-

3
tution of expressions (C27) and (C28) into equations (C6). When this

is done the results are

2
P an 1 m 2. 4 sinnn®
u = + -—_ - EALUR 4
— Eh 12tana[11+2u m ]y cos 91
p an2 1 2. 4 0
v = - _ cos nw
Eh 12 tana [3(1-2v) - m™] y sin 0
1 (c29)
2
p. L
P _ 'n 1 2 2 4 cos nn @
w' = - - nwy
Eh 12tanaa (m”-1)(m Ny sin 61
The corresponding stresses obtained from (Cl) with k = O are:
L
NP = pn (3-m2) 2 cosnwb
s 6 tan a y sin 91
N P _ pn 2 cos nw 0 ¢30)
0 tan a sin 91 (c3
L
N_P-= Pn 2 sinnw
Os —3tana cos 0

By retaining the solutions of the lowest order of % , one finally

has the complete solutions for a shell subjected to the lateral load (C7)
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u = uI+up, v = vI+vp,
w = \vI+'v1 +'wp;
_ I P II
= + = p
NS Ns Ns , NO N9 + Ns ,
- - _ I p
N = N = +
s 8s Ts NSO Nse (c31)
M = M 1I M. = M II
s s 0 0
- - II - II
MOs s9 Mse ’ SQ Se
- I
Ss Ss

NUMERICAL EXAMPLES

In what follows, two numerical examples are given. One is the en-
gine shroud discussed in Appendix A. The other is a cantilevered com-
plete cone frustum for which the numerical solutions are available in

[C)g and [CS] . Comparisons of the present solution with those given
in [c9] will be made.

Example 1

The engine shroud considered is a semicircular truncated conical
shell segment which has two generators simply supported with the small
end fixed and the other end free. Thus the lower set of sinusoidal func-
tions of the solutions is used with the following boundary conditions
for the solution:

= - ow
u = = S e— = —————
v w s 0 at y

(C32)

The same material and geometrical constants as used in Appendix A are
used here, i.e.,
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L

-1 _ o 1 _
v = 3 e = 75 and T 0.90 (C33)
Numerical results for % = 0.006 and n =1, 2 are computed. The re-

sults are given in the form

sin nr

n=1and 2 (c3kL)
cos 91

Fn(y, 8) = fn(Y)

The functions i‘n(y) are shown as the solid lines in Figures Cl through

C7. The respective functions obtained in Appendix A are also shown in

these figures by dotted lines if there are some differences.

Example 2
In this example, a cantilevered complete cone frustum fixed at the

smaller end is considered. At the larger free end, a rigid plate is
attached and a moment, M, is applied about a horizontal axis. Thus the
solutions are symmetrical about the vertical axis through the center of
the cone. For such a complete cone, the upper set of sinusoidal func-
tions of the solutions is used with the angle © measured from the vert-

ical line taking n =1 and 01=TL

The boundary conditions at the free end, referring to [Cl.g , can be

.
given as follows:

= = i
TrRl[Ts Sssma Nscosa] 0

TrR1 [MS—R1 (NS sin a +SS cos a)] = -M

_ _ (C35)
useca tv+wtanae = 0

dw -

1]
o

1 -—
t——[vsina - wcos a]
Ry

(o3}
0]
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where Rl = gj—_nli—a and a function with a bar indicates that the function
is of function of y only. When the asymptotic solutions are used and

the terms of the lowest order of % are retained, the conditions (C35)

become
= I =1I _
NsO —NS cosa=20
N I _ M .1
s 2 sin a
TR
1
_ _ _ _ aty = 1
uI sec a +vI+(wI+wH)tana =0
(c36)
B;H o
9s
The other four boundary conditions at the fixed end are:
II L
I I I II ow
u = = <+ = = = r— CB?)
v w tw ™ 0 aty I (
The following material and geometrical constants are used:
v = 0.3 .1 tana=i and'L—1=2
"R 40 3’ L 8 (c38)
N . C)-, ’ Ry g,
Two sets of stress ratios, 2/(7]M and  "m/Cp. 4 Were com-
puted, and are given in Figure CB8, where
. -8
2 t
N
= _S]
1Mmax t ’‘max (C39)
6M
(1 = 5
m h2

-<J
(@]



CLOSING REMARKS

The asymptotic solutions obtained are relatively simple when com-
pared to other available solutions for conical shells of constant thick-
ness. The results of the first example show that the difference between
the solutions for linearly varying thickness and constant thickness is
relatively small. This indicates that the assumption that these two types
of shell will behave alike when the ratio of thickness to radius is very
small is acceptable.

The difference between the present and other available solutions
shown in the second example may be attributed to the relatively large
ratio of t/R which is E%. Such a shell is relatively thick for the .

application of the asymptotic solutions. Nevertheless,'the results may
still be valuable for preliminary design purposes assuming that the other
solutions are better than the present solutions. This assumption, how-
ever, needs further verification which can probably be obtained by an ex-
perimental study.
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APPENDIX D

COMPUTER PROGRAMS FOR CONICAL SHELLS

By Han Yun Chu

The contents of this appendix were previously submitted as a part of
Progress Report No. 6 for NASA Contract NAS8-11155.
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COMPUTER PROGRAMS FOR CONICAI, SHELLS

By Han Yun Chus¢

The Univac Solid-State Fortran II language is used for the computer

programs included.

The following table shows the relationship between the symbols used

in the computer programs and those in the equations:

: Et Et Et Et Et 1
tnequations | 5= | 2| 2P| T4 | | —2%
pL pL plL pL rL plL
In programs D(1) D(2) D(3) c(i) W Y
1, E Et Ebow | 1, b _1 1, 1
pLos| T2 5 pLas| pois| ool 3T 5T 0
pL pL
Z E F G H A B X
O, O
2m/c. n/oc.

T al vy L 5 k Pl ¥Y|&E]m B lmmax lmmax
TS| St P FLI| DB FKS{Q T Ry U CT RN RM

COMPUTER PROGRAMS

Computer Program 1

Computer program 1 is for the numerical example given in Appendix

B *Graduate student in Engineering Mechanics, University of Alabama,
University, Alabama and Graduate Research Associate for NASA Contract NASS8-

11155.
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W

DIMENSION D(3), C(8)

READ 1, TS,S,P,R, U

FORMAT (5E15.7)

FL1=373.312/0.96593

DB=TS/FL1

FKS=DB*%*2(/12 .0

Q=(SQRT(2.0)/2.0)*((16 .0%(1.0-P**2)*(TAN(S))**2)/ FKS)**(1 .0/4 0)
Q=ABS(Q)

PRINT 4, S, P, R, FL1, DB, FKS, Q

FORMAT (6HS =,E15.7,/,6HP =,E15.7,/,6HR =,E15.7,/,
1 6HFL1 = ,E15.7,/,6HDB =,E15.7,/, 6HFKS = ,E15.7,/,
2 6HQ =,E15.7,/)

V=Q*LN(R)

D(1)=U/(TAN(S)*3 .0)*(U**2-3 .0%(5.0-P)/2.0-3.0%(1 ., 0+P)/ (2 . 0¥U**2))

D(2)=U/TAN(S)/3.0%(U**2-7 . 0+2 . 0%P)

D(3)=1.0/(6 .0*TAN(S))*(3.0%(1.0-2.0%P) -Ux*2)

C(1)=(U**2-1.0)/ TAN(S)*(-D(3) *R**2-((1 . 0+P)*D(3) - U*P*(D(1)-D(2))+
1(1.0-P)/4.0%U*(D(2)+2. 0%U*D(3)))/ ((1.0-P**#2) %xR#%2)+U#(D(2)+2 0%
2D(3))/(8.0%(1 . 0+P)*R**4)) ,

C(2)=(U#*2-2 .0%(1.0-P))/ (2.0%(1 .0-P**2)*TAN(S))*((1 . 0+P)*D(3) -U *P
1#(D(1)-D(2))+(1.0-P)*U*(D(2)+2 . 0¥U*D(3))/ 4 . 0)

C(3)=U/ TAN(S)*((U*D(3)-D(1)-D(2)*LN(R))+U/ (2.0%(1 . 0-P*%2) %R *%4)
1#((1. 0+P)*D(3) -U*P*(D(1)-D(2))+(1.0-P)/ 4 . 0%U*(D(2)+2 . 0%U*D(3)))
2-(D(2)+2.0%¥U*D(3))/ (12.0%(1 . 0+P)*R**6) x(U**2+2 . 0%(1 . 0+P)))

C(4)=-(U*(D(2)+2. 0¥U*D(3))*(U**2-7 . 0+2 . 0%P))/ (24 . 0%(1 . 0+P)*TAN(S))

CT=(R**Q*(3.0*COS(V) -SIN(V))+R**(-Q) *(COS(V) -SIN(V)))/ (R**Q*( - COS(
LV)HSIN(V))H+R**(-Q) *( COS(V)+SIN(V)))

C(6)=-(C(1)*R+C(2)/ R+C(3)*R**3+C(4)/ R**3+U/ TAN(S)*D(2)*(1 .0+LLN(R))

1*R**%3) [ (R*++Q*((2 . 0+CT)*COS(VI+SIN(V))+R **(-Q) *(CT*COS(V)+SIN(V))}
C(5)=(2.0+CT)*C(6)

C(7)=CT*C(6)
C(8)=c(6)

PRINT 7, (J, C(J), J=1, 8)
FORMAT (2HC(, 12,4H) = ,E15.7,/)
READ 6, T

FORMAT (E15.7)

W=(C(1)+C(2)/ T**2+C(3)*T**2+C(4)/ T*%4+U/ TAN(S)*D(2)*(1 . 0+LN(T))*T *
1#2+T k(- 1) %(T*#Q*(C(5) *COS(Q*LN(T))+C(6) *SIN(Q*LN(T)))+T #*( -Q) *(C(
27 )*COS(Q*LN(T))+C(8)*SIN(Q*LN(T)))))

Y=(2.0/ Q#*2*T #(T s *(C(6)*COS(Q*LN(T)) - C(5) *SIN(Q*LN(T)))+T**(-Q)
1#(-C(8)*COS(Q*LN(T))+C(7) *SIN(Q*LN(T))))) *(T AN(S))**2

Z=(1 .0/(Q*T)*(T**Q*((-C(5)+C(6))*COS(Q*LN(T))+(-C(S) -C(6))
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I*SIN(Q*LN(T))HT #*(-Q)*((C(7)+C(8))*COS(Q*LN(T))+(-C(7)+C(8))
2*SIN(Q*LN(T)))))*(TAN(S))**2

E=U*TAN(S)*(C(1)/(U**2-1.0)+C(2)/ ((U**2-2.0%(1.0-P))*T**2)+C(3)
LHT*%2 [ Uk2+((U**2-4 . 0%(1 . 0+P))*C(4))/ (U**2%(U**2-7 . 0+2 . 0%P)*T **4))
2+(D(1)+D(2)*LN(T))*T *%*2

F=TAN(S)*(C(1)/ (U**2-1.0)+(2.0%C(2))/ (U**2-2 .0%(1.0=P))
1T #%(-2)+3 ., 0%C(4)/ ((U*%2-7 . 0+2 . 0%P)*T *%4))+D(3) *T **%2

G=Q/ (2. 0*T #*x3)*(T**Q*((C(5)+C(6))*COS(Q*LN(T))*+(-C(5)+C(6))
LASIN(Q*LN(T))+T *#(-Q)*((-C(7)+C(8)) *COS(Q*LN(T))
2+(-C(7)-C(8))*SIN(Q*LN(T))))

H=-2.0*TAN(S)*(C(2)/ ((U*%2-2.0%(1,0-P))*T *%2)+3 . 0%C(4)/ ((U**2-7 .0+
12 0*P)*T#%4))+T*%2/(1.0-P**2)*((1.0+P)*D(3) -U*P*(D(1)-D(2)))

A=1.0/(1.0-P*%2)%(D(3)*(1.0+P)-U*(D(1)-D(2)))*T #*2
1+T#%( - 1) *( T **Q*(C(5)*COS(Q*LN(T))+C(6) *SIN(Q*LN(T)))
2+Tx%(-Q)*(C(7)*COS(Q*LN(T))+C(8)*SIN(Q*LN(T))))*TAN(S)

B=((6 .0*TAN(S)*C(4))/ (U*(U**2-7.0+2 ,0%P)*T *%4)
1+((D(2)+2 . 0*xU*D(3))*T **2)/ (4 .0%(1.0+P)))

X=2.0%U*(2.0-P)/(Q#*2*¥T)*(T**Q*(C(6)*COS(Q*LN(T))-C(5) *SIN(Q>*
ILN(TDHT*#(-Q)*(-C(8) *COS(Q*LN(T))+C(7) *SIN(Q*LN(T))))
2#%(TAN(S))**2

PRINT 8,W,TS,Y,Z,E,F,U,G,H,A,B, T, X

8 FORMAT (4HW = ,E19.7, 15X, 4HTS= ,E15.7, /,4HY = ,E19.7,/,

1 4HZ = ,E19.7,/, 4HE =,E19.7,/,4HF =, E19.7, 15X,
2 4HU = ,E15.7,/, 4HG =,E19.7,/,4HH = ,E19.7,/,
3 4HA = ,E19.7,/, 4HB =,E19.7, 15x,4HT = ,E15.7,/,
4 4HX = ,E19.7, 3/)
GO TO 5
END
DATA CARDS:
0.40 1.309 0.33 0.90 3.86
0.40 1.309 0.33 0.90 7.72
0.60 1.309 0.33 0.90 3.86
0.60 1.309 0.33 0.90 7.72
0.80 1.309 0.33 0.90 3.86
0.80 1.309 0.33 0.90 7.72
0.900
0.902
PRINT 7, (J, C(J), J=1, 8)
7 FORMAT (2HC(, 12,4H) = ,E15.7,/)
5 READ 6, T

6 FORMAT (E15.7)
W=(C(1)+C(2)/ T**2+C(3)*T **2+C(4)/ T **4+U [ TAN(S)*D(2)*(1 .0+LN(T))*T*
1#2+T#%(-1)*(T **Q*(C(5)*COS(Q*LN(T))+C(6) *SIN(Q*LN(T)))+T **( -Q) *( C(
27 )*COS(Q*LIN(T))+C(8)*SIN(Q*LN(T)))))
Y=(2.0/ Q**2+T #(T*#Q*(C(6)*COS(Q*LN(T)) - C(5) *SIN(Q*LN(T)))+T**(-Q)
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1%(-C(8)*COS(Q*LN(T)+C(7)*SIN(Q*LN(T)))))*(TAN(S))**2

Z=(1.0/(Q*T)*(T**Q*((-C(5)+C(6))*COS(Q*LN(T))+(-C(5) -C(6))
LASIN(Q*LN(T)))+T **(-Q)*(( C(7)+C(8)) *COS(Q*LN(T))+(-C(7)+C(8))
2*SIN(Q*LN(T))))) *(TAN(S))**2

E=U*TAN(S)*(C(1)/(U*%2-1.0)+C(2)/ ((U**2-2 ,0%(1,0-P))*T **2)+C(3)
1#T k2 [ Usk2+((U*%2-4 . 0%(1 ., 0+P))*C(4))/ (Uk**2%(U*%2-7 . 0+2  0*P)*T **4))
2+(D(1)+D(2)*LN(T))*T *%2

F=TAN(S)*(C(1)/(U**2-1.0)+(2.0%C(2))/ (U**2-2  0%(1.0=P))
1T *%(-2)+3 . 0%C(4)/ ((U*%*2-7 . 0+2  0%P)*T *%4))+D(3) *T *%2

G=Q/ (2. 0*T **3)*(T**Q#*((C(5)+C(6))*COS(Q*LN(T))+(-C(5)+C(6))
LASIN(Q*LN(T)))+T **(-Q) *((-C(7)+C(8)) *COS(Q*LN(T))
2+(-C(7)-C(8))*SIN(Q*LN(T))))

H=-2.0%TAN(S)*(C(2)/ ((U*%2-2 . 0%(1,0-P))*T**2)+3  0%C(4)/ ((U**2-7 .0+
12, 0%P)*T*%4))+T *%2/(1.0-P**2)*((1.0+P)*D(3)-U*P*(D(1)-D(2)))

A=1.0/(1.0-P*%2)%(D(3)*(1.0+P)-U*(D(1)-D(2)))*T *%2
1+T%%(-1)*(T **%Q*(C(5)*COS(Q*LN(T))+C(6) *SIN(Q*LN(T)))
2+T #*(-Q) *(C(7)*COS(Q*LN(T))+C(8)*SIN(Q*LN(T))))*TAN(S)

B=((6 .0*TAN(S)*C(4))/ (U*(U*%2-7.0+2,0%P)*T*%4)
1+((D(2)+2.0%*U*D(3))*T*%*2)/(4.0%(1 . 0+P)))

X=2.0%U*(2.0-P)/(Q**2*T)*(T **Q*(C(6)*COS(Q*LN(T))-C(5)*SIN(Q*
1LN(T)))+T**(-Q)*(-C(8)*COS(Q*LN(T))+C(7)*SIN(Q*LN(T))))
2%(TAN(S))**2

PRINT 8,W,TS,Y,Z,E,F,U,G,H,A,B, T, X

8 FORMAT (4HW = ,E19.7, 15X, 4HTS= ,E15.7,/,4HY = ,E19.7,/,
1 4HZ = ,E19.7,/, 4HE =,E19.7,/,4HF =,E19.7, 15X,
2 4HU = ,E15.7,/, 4HG =,E19.7,/,4HH =,E19.17,/,
3 4HA = ,E19.7,/, 4HB =,E19.7,15x, 4HT = ,E15.7,/,
4 4HX = ,E19.7,3/)
GO TO 5
END
DATA CARDS:
0.40 1.309 0.33 0.90 3.86
0.40 1.309 0.33 0.90 7.72
0.60 1.309 0.33 0.90 3.86
0.60 1.309 0.33 0.90 7.72
0.80 1.309 0.33 0.90 3.86
0.80 1.309 0.33 0.90 7.72
0.900
0.902
0.912
0.916
0.940
0.950
1.000
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Computer Program 2

Computer program 2 is for the numerical example given in Appendix

The same program as Computer Program 1 is used except cards
D (1), D(2) and D(3) are replaced by the following cards
respectively.

D(1)=U/(6.0%(1.0-P))*(3.0%(1.0+3.0%P)-3.0%(5.0-P)*TAN(S)
1-(2.0%U*%2-3 . 0%(1.0+P)/ U**2)*(1.0-TAN(S)))

D(2)=U/(3.0%(1.0-P))*((1.0+4 . 0%P-U**2)-TAN(S)*(7.0-2.0%P-U*%2))

D(3)=U**2/(6.0%(1.0-P))*(1.0-TAN(S)+3.0/ U**2%((1.0-2.0%P)
1*TAN(S)+1.0))

Computer Program 3

Computer Program 3 is for the first numerical example given in Ap-
pendix C.

DIMENSION D(3), C(8)
READ 1, TS,S,P,R
1 FORMAT (4E15.7)
FL1=373.312/0.96593
Q=(48.0%(1.0-P**2))**(0.25)*(FL1*TAN(S)/ TS)**(0.5)
Q=ABS(Q)
PRINT 2,TS,S,P,R, FL1,Q
2 FORMAT (6HTS =, E15.7,/,6HS =, E15.7,/,6HP =, E15.17,
1/.,6HR =,E15.7,/,6HFL1 =, E15.7,/,6HQ =, E15.7,3/)
V=Q*LN(R)
BT=12.0*TAN(S)
READ 4, T
4 FORMAT (E15.7)
DO 5, UR=1.0,2.0,1.0
U=3.86*UR
D(1)=-U*(11.0+2 .0%P-U**2)/ BT
D(2)=(3.0%(1.0-2.0%P)-U*%2)/ BT
D(3)=(U**2-1.0)x(U**2-9 .0)/ BT
C(4)=2.0%xU**x2%(U**2-4.0)/ BT
C(2)=12 ,0%((U**2-1.0)**2)/ BT
C(1)=((U*x2-P)/(2.0%(U**2-1.0))-LN(R))*C(2) -(U **2-1 . 0)
1%(2.0%C(4) ]/ (R**2*%(U**2-4 . 0))+D(2)*R**4)
C(3)=-U*D(1)*R**2-(U*%2-2.0-2 . 0%P)*C(4)/ (R**4*(U**2-4 .0))
1-Usx2 [ (R*#*2%(U*%2-1.0))*(C(1)-((1.0-P)/ (2. 0%(U*%2-1.0))
2-LN(R))*C(2))
CK=(R**Q*(3.0%COS(V)-SIN(V))+R **(-Q)*(COS(V)-SIN(V)))

w

o
w




1/ (R**¥Q*(-COS(V)+SIN(V))+R **(-Q) *(CK*COS(V)+SIN(V)))

C(6)=-(C(1)+C(2) *LN(R)+C(3) *R**2+C(4) ¥R **(-2)+D(3) *R **4)

1/ (Re*Q*((CK+2 . 0)*COS(V)+SIN(V))+R**(-Q) *(CK*COS(V)+SIN(V)))

C(7)=CK*C(6)

C(5)=C(7)+2.0%C(6)

C(8)=C(6)

VT=Q*LN(T)

W=1.0/ TAN(S)*(C(1)+C(2)*LN(T)+C(3) *T *%2+C(4) *T (- 2)+D(3) * T 4
1+T#2Q*(C(5) *COS(VT)+C(6) *SIN(VT))+T **( -Q) *
2(C(7)*COS(VT)+C(8)*SIN(VT)))

Y=2.0*TAN(S)/ (Q**2*T *%4) *(T **Q*(C(6) *COS(VT)-C(5)*SIN(VT))
1+T#*(-Q) *(-C(8) *COS(VT)+C(7)*SIN(VT)))

Z=TAN(S)/(Q*T **4) *(T**Q*((C(6) -C(5))*COS(VT) -(C(5)+C(6))*SIN(\ T)
I+T**(-Q)*((C(8)+C(7)) *COS(VT) -(C(7) -C(8)) *SIN(VT)))

E=1.0/Ux(U**2/(U**2-1.0)*%(C(1)-((1.0-P)/(2.0%(U**2-1.0))
1-LN(T))*C(2))+C(3)*T**2+(U**2-2 . 0-2 . 0%P)*C(4)

2/ (T*%24(U*%2-4 ,0)))+D(1)*T *%4

F=1,0/(U*%2-1.0)*(C(1)-((U**2-P)/(2.0%(U*%2-1,0))-LN(T))*C(2))
142 0%C(4)/ (T ##2+(U**2 -4, 0))+D(2) *T **4

G=Q/ (2. 0*T AN(S)*T **2)*(T**Q*((C(5)+C(6)) *COS(VT)
1+(C(6) -C(5))*SIN(VT)) - T**(-Q)*((C(7) -C(8))*COS(VT)
2+(C(8)+C(7))*SIN(VT)))

H=C(2)/(2.0%(U**2-1.0)¥T *%2) -2, 0%C(4)/ ((U**2 -4 . 0)*T *x4)
L+T#52/(1.0-P*%2)%((2 . 0+P)*D(2) -P*U*D(1)+P*D(3))

A=T*%2[(1.0-P*%2)*((2.0%P+1 . 0)*D(2) -U*D(1)+D(3))+1 .0/ T *%2
DH(T#**Q*(C(5)*COS(VT)+C(6)*SIN(VT))+T#*( -Q) *
2(C(7)*COS(VT)+C(8)*SIN(VT)))

B=2.0%C(4)/ (U*(U**2 -4 ,0)*T**4)+T*%2/(2.0%(1 .0+P))
1%(D(1)+U *D(2))

X=2.0*TAN(S)*(2.0-P)*U/ (Q#*2+T **4)*(T**Q*(C(6)*COS(VT)
1-C(5)*SIN(VT))+T **(-Q) *( - C(8)*COS(VT)+C(7)*SIN(VT)))

PRINT 6, W,T,Y,Z,E, F,U,G,HA, B, X

6 FORMAT (5H W = ,E19.7, 15X, 4HT = ,E15.7,/,5HY = ,E19.7, /,
15H 2 = ,E19.7,/,5HE = ,E19.7,/,5H F =, E19.7, 15X,
24HU = ,E15.7,/,5HG = ,E19.7,/,5H H = ,E19.7, /,
35HA =,E19.7,/,5HB = ,E19.7,/,5H X = ,E19.7, 3/)

5 CONTINUE

GO TO 3

END

DATA CARDS:

0.6 1.309 0.333 0.90

0.900

0.902

0.912

0.916




0.940
0.950
* 1.000
Computer Program L
Computer Program L, is for the second numerical example in Appendix
C'

DIMENSION C(8)
READ 1,TS,S,P,R
1 FORMAT (4E15.7)
FL1-13.333
PI=3.1416
BJ=1.0/(PI*(COS(S))**2*SIN(S))
Q=ABS((48 .0%(1.0-P*%2))**(0.25)*(FL1*TAN(S)/ TS)**(0.5))
U=1.0/COS(S)
PRINT 4,TS,S,P,Q, R, U
4 FORMAT (6H TS = ,E15.7,/,6HS =,E15.7,/,6HP =,E15.7,/,
16HQ =,E15.7,/,6HR =,E15.7,/,6HU = ,E15.7,3/)
V=Q*LN(R)
C(1)=(U**2-1.0)*BJ/ R**2
C(2)=0
C(3)=-BJI*(1.0+P+U**2/ 2 0)/ R*x*4
C(4)=-(U*%2-4 .0)*BJ/2.0
DET=(R*®Q-R**(-Q))**2-4  0*(SIN(V))**2
BET=C(1)+C(2)*LN(R)+C(3)*R**2+C(4)/ R**2
C(5)=-1.0/ DET*(BET*(R**Q*(COS(V)+SIN(V)) -R##(-Q)*(COS(V)-SIN{ )
1+P*BI*(1  0-R¥*(-2 . 0%Q)+2 . 0%(SIN(V))*%*2+SIN(2 . 0%V)))
C(6)=1.0/ DET*(BET *((R**Q-R**(-Q))*COS(V) -(R**Q-3 . 0*R*¥(-Q))
LSIN(V))HP*BJ*(SIN(2 . 0%V)+COS(2.0*V)-R**(-2 . 0%Q)))
C(7)=P*BJ -C(5)
C(8)=P*BJ-2.0*C(5)-C(6)
PRINT 7, (J, C(J), J=1, 8)
FORMAT (2HC(, 12,4H) = ,E15.7,/)
READ 6, XC
6 FORMAT (E15.7)
T=SQRT((5.0%XC+8.333)/13.333)
VT =Q*LN(T)
HM=-2.0*C(4)/ (R**4%(U**%2-4.0))
A=1.0/T#*2¥(T**Q*(C(5)*COS(VT)+C(6)*SIN(VT))
1+T *%(-Q) *(C(7) *COS(VT )+ C(8)*SIN(VT)))
Y=2.0*¥TAN(S)/ (Q**2*T #%4 ) *(T**Q*{C(6) *COS(VT)-C(5)*SIN(VT))
1-T*¥(-Q)*(C(8)*COS(VT)-C(7)*SIN(VT)))
RM=6.0*%Y*FL1/(TS*HM)

[SE N |
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RN=A/HM
PRINT 9,HM, T, Y, A, RM, XC, RN

9 FORMAT (4HHM = , E15.7, 15X, 4HT = E15.7,/,4HY =,E15.7,/,
14HA = ,E15.7,/,4HRM = E15.7, 15X, 4HXC =, E15.7, /, 4HRN =, £15.7. 3/)
GO TO 5
END

DATA CARDS

0.2 0.927 0.3 0.7900
.00

.02

.20

.25

.00

- OO 1 OO0

(0]
()N




APPENDIX E

STABILITY OF SMALL PLASTIC CYLINDERS SUBJECTED TO
INTERNAL PRESSURE AND AXTAL COMPRESSION

BY Thomas A. Carlton, Jr. and Gustavo A. Aramayo

The contents of this appendix were previously submitted as Progress Re-
port No. 3 for NASA Contract NAS8-11155.
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APPENDIX E

STABILITY OF SMALL PLASTIC CYLINDERS SUBJECTED TO

INTERNAL PRESSURE AND AXTAI. COMPRESSION

By Thomas A. Carlton, Jr.% and Custavo A. Aramayos:

INTRODUCTION

The development of theoretical criteria for the buckling of mono-
coque and stiffened thin shell flight structures has taken place at a
rapid pace under the impetus of the space program. The experimental
verification of these criteria has made only limited progress. The
reasons for the gap which has developed between theory and experimental
verification are numerous. The use of high speed computers has made
possible the rapid solution of complex shell stability equations. Thus,
it has been possible to generate theoretical design data at a much fast-
er rate than it can be experimentally verified.

Unfortunately, the idealized conditions assumed in the theoreti-
cal solutions are not realized in either model or prototype shell. In
order to determine if the lack of ideal conditions in a physical model
imposes a: severe limitation on the use of totally theoretical design
methods, an extensive experimental investigation must be undertaken.

In those cases where a particular structural configuration has been
dictated by space and service requirements, both model and prototype have
been constructed and tested so as to establish the practical limitations
of that structure. The information gained is usually limited to the
particular structure being studied and is not readily extrapolated to
the general analysis of such structures.

It would be desirable to undertake a comprehensive experimental
program to provide the necessary confidence in theoretical design cri-
teria so that, at most, only limited non-destructive prototype testing

*Professor of Civil Engineering, University of Alabama, University,
Alabama and Staff Associate for NASA Contract NAS8-11155.

*#Graduate Student in Engineering Mechanics, University of Alabama,
Uni;ersity, Alabama and Graduate Research Associate for NASA Contract NAS8-
11155.
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would be indicated. The practicability of such a program is dependent

on being able to provide a large number of suitable models at a reason-
able cost. Therein lies the primary objective of this study: to determ-
ine if suitable models for experimental shell stability studies can be
inexpensively fabracated from commercially availabie sheets of cellulose
acetate.

Under the terms of Contract NAS8-11155, an experimental study was
conducted to determine the suitability of cylindrical shells fabricated
from flat sheets of cellulose acetate for verifying theories of shell
stability. The unstiffened plastic cylinders were subjected to various
combinéﬁions of axial compressive load and internal pressure. A total
of thirty-two cylinders were fabricated. However, data were collected
for only twenty-three cylinders. The remaining cylinders were either
destroyed during installation in the testing machine or had initial im-
perfections that made them unsuitable for testing.

It was initially proposed to conduct tests using cylinders of wvar-
ious L/D and r/t ratios. However, the actual test program was limited
to one value of L/D and three values of r/t. Limitations on the r/t
ratio were due mainly to the difficulties encountered in the installa-
fion of the cylinders into the loading device.

TEST SPECIMENS

The cylindrical shell models were prepared from flat cellulose ace-
tate sheets measuring 20 inches by 50 inches. Thicknesses used were
0.0075, 0.010, and 0.015 inches. These sheets were cut toc~form the pro-
Jection of the external wall of the c¢ylinders and a longitudinal seam
was formed by making a lap joint and gluing with Fibestos cement. De-
pending upon the wall thickness of the cylinder, two different overlaps
were used for'the longitudinal seam. A 1/8 inch overlap was used for
the cylinders of the 0.010 and 0.015 inch wall thickness and a 1/L inch
overlap was used for the cylinders having a wall thickness of 0.0075
inches. An attempt was made to fabricate cylinders with a wall thick-
ness of 0.00S‘inches, but inability to fabricate suitable models pre-
cluded the continuation of this effort.

The basic dimensions of the cylinders were: Length 20 inches,
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average diameter 15 inches, and wall thicknesses of 0.0075, 0.010, and
0.015 inches resulting in radiuns-to-thickness ratios of 1000, 750, and
500 respectively. Wall thickness had a variation of ¥ 0.0002 inches as
determined with a dial indicator reading to the nearest 0.0001 inches as
shown in Figure E1. The diameter of the cylinders was within 0.05 per
cent of the nominal mid-wall dimension of 15 inches. The diameter of
each cylinder was determined by measuring the circumferential length and
seam overlap prior to fabrication.

Coupons from each test cylinder were obtained in an attempt to deter-
mine the material properties of the individual specimen. At least two
flat coupons 1 inch wide and having various gage lengths were cut from
each flat sheet and tested in tension. Due to slippage of the coupons in
the grips and, perhaps, other factors, the results of the tension tests
of coupons from the same sheet exhibited large variations and were of
little value in determining the tensile modulus of elasticity and Poisson's
ratio. No attempt was made to determine the compressive modulus of elas-
ticity of the flat coupons since compressive tests of the coupons would
have required lamination of several coupons or some other device to pre-
vent buckling that would have introduced additional unknowns.

In a further attempt to determine the material properties, data
collected in the testing of the individual cylinders were analyzed. From
the test of a cylinder at zero internal pressure, the modulus of elas-
ticity in compression can be computed from the load-deformation curve and
the dimensions of the cylinder. Then, if the vertical deformation of the
unstrained cylinder is totally restrained when the intermnal pressure is

applied, i.e., ey = 0, it is possible to compute Poisson's ratio. When

the cylinder is clamped to the loading head, the difference between the
internal pressure force on the loading head and the load required to pre-
vent vertical deformation in the cylinder is used to compute the longi-
tudinal tensile stress, oy, in the cylinder wall. The hoop stress, O

is equal to p(r/t). Thus, Poisson's ratio, ., is oy/cx. However,

measured forces indicated that slipping occurred between the cylinder and

the loading head in every test, thus, partially relieving the induced Gy

stress. For this reason, it was necessary to disregard experimentally

determined values of Poisson's ratic and use an assumed value of O0.3.
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Furthermore, analysis of the test cylinder data showed that slippage oc-
curred between the cylinders and supports. Since the displacement mea-
surements made during the tests were obtained by measuring the relative
displacement of the heads of the testing machine and the amount of slip-
page was indeterminate, this data could not be used to determine the com-
pressive modulus of elasticity.

The experimentally determined values of the modulus of elasticity
were all considerably less than the manufacturers specified value of
400,000 psi. However, because of the scatter in the test results and
the unknown uncertainities in the tests conducted to determine the modu-
lus of elasticity, the manufacturers nominal value of 400,000 psi was
used in the analysis of the stability tests. Although it seems reasonable
to assume that there are only small variations in the modulus of elas-
ticity from sheet to sheet, it is possible that some of the scatter ob-
served in the tests of the cylinders was due to variations in the com-

pressive modulus of elasticity.

EQUIPMENT AND PRECEDURES

An Instron universal testing machine was used for applying the load
and measuring the load and displacement as shown in Figures E2 and E3.
The displacement measured was the total movement of the machine platen and
therefore included any slipping between the loading head and the test
cylinder. The load was transferred to the cylinders by means of end
loading plates. The plates were designed to fit into the test cylinder
a distance of one inch. The lower plate was fastened to the movable head
of the machine and the upper plate was fastened to a load cell. The cyl-
inders were installed in the loading rig by sliding the ends of the spec-
imen over the loading plates and then clamping to the loading plates with
a metal strap one-half inch wide. Thus, the load was transferred through
the clamps into the cylinder. The clamps also helped seal any pressure
leaks resulting from a lack of fit between the cylinder and the loading
plates.

Internal pressure was provided from an air supply at 150 p.s.i. The
air passed through a pressure regulator and a relief valve before going

into the cylinder. A constant pressure was maintained during each test

91



by allowing a regulated amount of air to escape from the cylinder. In-
ternal pressure was measured by means of a manometer reading in inches

of mercury. Load versus disPIacementvwas obtained froman X - Y re-

corder with an electric strain gage load cell providing the load input

and a resistance potentiometer providing machine crosshead movement as

the displacement input.

The, cylinder specimens were deformed at a constant rate. In order
to determine the effect of rate of loading on the critical buckling load,
two different rates were investigated. These rates were 0.005 and 0.05
inches/minute displacement of the crosshead of the loading machine. At
low values of internal pressure, the buckling load resulting from the
high rate of deformation was about 3 per cent higher than the buckling
load obtained using the lower rate. However, at values of internal pres-
sure of 1.5 p.s.i. and higher, no difference in the buckling loads was
found at the two different rates of deformation. The data collected rep-
resent values of buckling corresponding to the slow rate of loading.

The load-deformation curve for the test cylinders was essentially
linear over most of the range. However, near the maximum load, a sharp
but smooth transition into a horizontal plateau of constant load and in-
creasing deformation occurred. Critical buckling load was determined
from this horizontal plateau of the load-deformation curve.

In some cases, the formation of isolated diamond-shaped buckles oc-
curred prior to any indication of buckling in the load-deformation curve.
The load at which this occurred was not recorded since the critical buck-
ling load was found to be only slightly higher. The formation of buckles
in the unpressurized cylinders was predominant aroind the seam in regions
that showed some initial imperfections. At higher loads, the buckles
showed a more uniform distribution and they were always more numerous in
areas having such initial imperfections as dents and ripples.

In the pressurized cylinder tests, the internal pressure eliminated
most of the visible evidence of imperfections in the cylinders. In the
pressurized tests, the formation of the diamond-shaped buckles was pre-
ceded by the formation of a uniform circumferential ripple at top and
bottom of the specimen. At the critical buckling load established by
the load-deformation curve, some diamond shape buckles appeared in the

same regions and progressed in the circumferential direction. These
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buckles, in contrast with the ones formed in unpressurized tests, had
their maximum dimension in the circumferential direction. Circumferen-
tial tension in cylinders subjected to axial compression tends to sup-
press the formation of diamond shaped buckles. Furthermore, the intro-
duction of internal pressure into a cylinder increases the circumferen-
tial tension and, if the external pressure exceeds a certain limit, dia-
mond shaped buckles are suppressed and the axisymmetric mode prevails.
However, the presence of initial imperfections tends to suppress the axi-
symmetric buckle. In the tests conducted, the initial imperfections cou-
pled with the low values of internal pressure produced diamond shaped
buckles rather than axisymmetric buckles.

The tests were conducted by first applying the internal pressure to
the cylinder while preventing any movement of the testing machine platen.
The restraining force was recorded. The axial compressive load was then
applied to the cylinder while the internal pressure remained constant.
Each cylinder was subjected to a series of tests in which the internal
pressure was varied from test to test and in which the cylinder was ul-
timately destroyed. After a cylinder was buckled at one value of intern-
al pressure, the load and pressure were relieved, the pressure was in-
creased by 1/2 psi and the cylinder was again loaded to the critical
buckling load at the increased internal pressure. This procedure was es-
taﬂlished after one cylinder was first buckled several times with zero
internal pressure and then loaded until buckling with internal pressures
of 1, 2, 3 and 4 psi. Finally, this same cylinder was again buckled at
zero internal pressure and no significant change in the buckling strength
determined in the first test was observed. This procedure was repeated
with other cylinders and the uniformity of test results indicated no ef-
fect on the mechanical properties due to repeated testing. These tests
showed that the same cylinder could be used several times provided that
the deformation was stopped as soon as the critical buckling load was
reached.

The wave length of the buckles were not measured because this was
not considered important in achieving the study objectives. Since the
criterion of failure of the cylinders was a plateau in the load-displace-
ment curve, the load was released as soon as a plateau was observed in

the load displacement curve. This procedure permitted an individual
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cylinder to be tested many times. However, in many of the tests only an
incomplete system of buckles had formed when this criterion was observed.
Therefore, the test procedure used would have required modification to
permit measurement of the wave lengths of the buckles.

THEORETICAL BUCKLING CRITERION

A summary of the theoretical buckling criteria for pressurized and
unpressurized monocoque thin shells is presented by Harris, Suer, Skene,
and Benjamin @D] %*. Critical buckling stress for the unpressurized cyl-
inder based on Donnell's EF‘EJ equations is given in terms of a buckling
coefficient, Kc. For the case of umpressurized long cylinders, this

theoretical buckling coefficient becomes

3 2
K = _1*2_3_ YL_ (E1)
c 1 rt
The equation for critical stress is
o 2
cr 2 [t
—E - o) (E2)

n

Substitution of the buckling coefficient into the critical stress equa-
t for critical stress

tion results in

o
L = -~ (E3)

where m = 1 for the case of elastic buckling.

For a cylinder subjected to a combination of axial load and internal
pressure, the critical stress and internal pressure are expressed in terms
of the following non-dimensional parameters:

(EL)

*Numbers in brackets designate references at the end of this appendix.

Sk



p= £ (%"\ (E5)

where Oop is the stress in the cylinder at buckling.

Lo, Crate, and Schwartz I:EBJ indicate that this stress is equal to
the stress in the cylinder corresponding to the load in the cylinder at
the time of local buckling in any particular region of the shell. Thus,
from these parameters and in accordance with Lo's analysis, the value of
a;r increases from 0.376 for p = O "to a maximum of 0.605 for 5.- 0.169.

The Flugge theory Eﬂg indicates that the value of 5;r is equal to 0.605

for all values of p.
Following Lo's analysis, another non-dimensional parameter,
Ao "0 _ -0 (E6)

er er cro
can be determined. The only new term is E;r
corresponding to a condition of zero internal pressure. The definition of
the stress term is the same as the one indicated for the non-dimensional
buckling stress. Test results can be interpreted as a per cent of the
theoretical buckling stress computed by equation (E3). Both the theoret-
ical and experimental buckling stress and the internal pressures are sub-
stituted into equations (EL) and (E5) for comparison purposes.

In ths analysis of the unpressurized oylinders, equation (El) is re-

written in the following form

K, - -ﬂf @) @)

where the value of Z is as follows:

o? the non-dimensional stress

]
ZIL_ l-vz . (Ee)
rt
also, equation (EL) is rewritten in the follewing formi
Oor = & E;r(g) (E9)
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EXPERIMENTAL DATA

The results of the experimental study are presented in Tables EI,
EII, EITI, and EIV. For ease in analysis, these data are further sum-
marized in graphical form. The experimental data have been substituted
into equations EL and ES and the results plotted in Figures EL, E5, and
E6. Each of these figures presents the data for a particular value of
r/t. The variation in sheet thickness was not accounted for in these
figures since it was a random variation over each sheet rather than a
variation of thickness between cylinders. The critical buckling stress,
Oup? Was computed as the net buckling load divided by the cross-sectional

area of the cylinder wall. The net buckling load is the total load on

the cylinder at buckling minus the internal pressure reaction load,

p(nrz). Each of the above figures contains all of the satisfactory ex-

perimental values of 5;r vs p for a particular r/t ratio. In addi-
tion, the values of E;r have been averaged for each value of p and a
curve sketched for these average values of EEr' The theoretical rela-

tionship according to Io @é] is also shown on each of these figures. It
should be noted that the experimental data more closely approximates the
theory for the highest r/t ratio of 1000. The average values, taken from
Figures El, E5, and E6, have been swmarized in Figure E7 for comparison
purposes.

The data of Tables EI, EIT, and EITI have also been substituted in-
to equation E6 and the results plotted in Figures E8, E9, and E10. Aver-
age values from these graphs are summarized in Figure Ell. These figures
emphasize the stabilizing influence of internal pressure. Lo, Crate, and
Schwartz [bé] have suggested that better correlation between theory and

experiment can be obtained if the increment in buckling parameter, Aa;r,

is plotted against the pressure parameter, p.
The experimental data for the unpressurized cylinders are presented
in Figure E12 as a plot of the stress parameter, Ecr’ versus the r/t

ratio. A best fit curve for these data was determined by the method of

least squares. The equation for this curve is as follows:
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- r
Oop = 0.209 - 0.00003 I (E10)

Using equation E10, for r/t ratios of 500, 750, and 1000, values of Ecr

were computed respectively as 0.19L, 0.186, and 0.179. It follows then,
from equation E9, that, for the umpressurized cylinders, the best fit ex-

perimental values of the critical buckling stress, O,p» are respectively

155.00, 99.20, and 71.60 p.s.i. Equation E2 was solved for the buckling

coefficient, Kc’ for the case of elastic buckling and the materials and
geometry used in this study. The values of the buckling coefficient, Kc,
are respectively (h.hBB)(ccr), (9.9855)(ccr), and (17.752)(ccr) for r/t

ratios of 500, 750, and 1000. Using the values of critical buckling stress,

Oop? computed above, the experimental buckling coefficients, Kc’ become

respectively 687.89, 990.56, and 1271.04. The values of Z computed from
equation E8 are 3060, 4591, and 6120 for wall thicknesses of 0.015, 0.010,
and 0.0075, respectively.

The values of experimental KC and Z computed above have been

plotﬁed on log-log paper in Figure E13 after the manner of Harris, Suer,
Skene, and Benjamin Eﬁﬂ . Superimposed on this plot are the theoretical
and the 90 per cent probability curves taken from the same reference.

ANALYSTS OF RESULTS

The fabrication of the test cylinders from flat sheets of plastic
was performed in a relatively unsophistocated manner. The sheets were
hand trimmed and the longitudinal joint was formed on a flat table so
that, at this point, the specimen looked more like a flat envelope than
a cylinder. Although several different adhesives and techniques were in-
vestigated, the material tended to wrinkle along the seam resulting in a
joint in which small local imperfections were readily noticéable. Unfor-
tunately, it is not possible to represent the quality of the specimen in
terms of initial local imprefections. However, it must be assumed that
all had some local imperfections.

In view of the above observations on local imperfections, several

interesting observations can be made from Figures El, E5, and E6. It can
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be observed that, for all three r/t ratios represented in these figures,
the curve for the average values tends to flatten out and become parallel
to the theoretical curve of Lo as p increases. Since the same cylinders
were used in most cases for the full range of p, it appears that the
effect of local imperfections is less at high pressures. This is slight-
1y misleading since many of the highly imperfect cylinders were actually
destroyed before the higher values of internal pressure could be reached.

Assuming that the scatter in the experimental data is directly re-
lated to the quality of the cylinder, it is obvious that a large number
of tests must be conducted when relatively imperfect cylinders are used.
Although the behavior of the individual models is erratic, the curves rep-
resenting the averages of the several tests behave very much according to
theory. An error in the modulus of elasticity would shift all data points
for the tests conducted on an individual cylinder an equal relative a-
mount, but the scatter between tests of different cylinders is strictly
a function of the local imperfections in the models and of the testing
procedure. The trend of the averages is a measure of the ability of cell-
ulose acetate to serve as a material from which to construct the models.

Another interesting observation can be made concerning the effect
of initial imperfections as a function of r/t ratio. In figure ElL, for
an r/t of 500, the scatter is large and the trend of the averages is
irregular. In Figure E5 for an r/t of 750, the trend of the averages
is smoother and more closely approaches the theoretical curve. In Figure
E6, for an r/t of 1000, the trend of the averages is quite smooth and
indicates that the behavior of the cylinders can be approximated by the
theory of Lo. Thus, it appears that, when pressurized, test data for
the cylinders having the higher r/t ratios, or at least made from the
thinner materials, are less effected by the initial imperfections. This
assumes that models of all thicknesses had the same relative initial im-
perfections.

According to Lo, Crate, and Schwartz @:3_1 , a better correlation be-
tween theory and experiment can be obtained if the increment in buckling

parameter, Aa;r, as computed by equation E6, is plotted against the

pressure parameter, p. This appears to be verified by the results shown
in Figure E8 for the cylinders having an r/t of 500. However, Figures
E9 and E10 for the higher r/t ratios show the data points to fall well
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above the theory line of Lo. In attempting to verify the theory, Lo as-
sumed that the unpressurized buckling parameter, EEro’ was always equal

to 0.36, and subtracted this value from the experimental pressurized buck-
ling parameter, Ebr s to obtain the incremental buckling parameter, AE;r'

However, from Figures EL, E5, and E6 it is seen that the urpressurized
buckling parameter, EEro’ determined in the experimental program at the

University of Alabama is of the order of 0.2. Had the theoretical un-
pressurized buckling parameter, 0.36, been used to compute the points
shown in Figures E9 and E10, the results would have very closely approx-
imated the theory of Lo. To a lesser extent, the same would have been
true for the higher values of p shown in Figure E8. Thus, it is clear-
1y seen that the effects of pressurization quickly minimize the influence
of model imperfections on the buckling strength of cylinders made with
thinner materials. Also, at higher pressures, the thicker materials are
less influenced by the initial imperfections. The theory of Lo appears
to be satisfactory for determining the critical buckling strength of high
r/t, pressurized cylinders and for lower r/t cylinders having high in-
ternal pressures. The references cited contain the results of twelve in-
dependent experimental investigations. Since the results obatined in this
study compare satisfactorily with the experimental results in the cited
references, no attempt was made to obtain comparisons with the large num-
ber of other investigations that are available in the literature.

The critical buckling parameter, Egr’ of the unpressurized cylinders

has been plotted against r/t in Figure E12, and a best fit curve deter-
mined by least squares. The values of EEr determined from this curve

together with the respective r/t ratios was used to compute values of
Kc and Z from equations E2 and E8 respectively. These values have been

plotted in Figure E13 against the theoretical curve of these quantities
and the 90 per cent probability curve. It is noted that, in each case,
the results determined from the best fit line fall above the 90 per cent
probability line. Furthermore, in only two cases do the individual test
results fall below the 90 per cent probability line.
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CONCTLUSIONS

The limited nature of the experimental work performed in this inves-
tigation does not permit reaching a large number of broad conclusions.
However, within the scope of the work performed, several limited but im-
portant conclusions can be drawn.

1. The large amount of scatter in the test results indicates that
more care should be taken in fabricating the test specimens and in con-
ducting the individual tests. Several nearly identical specimens should
be tested and the average of the results used for analysis purposes.

2. The manner in which the data obtained using cylinders fabricated
from cellulose acetate tend to verify the theory of Lo, Crate, and Schwartz
@j], indicates that the use of this material for providing low cost test
cylinders should be encouraged. However, a satisfactory method of deter-
mining the modulus of elasticity must be used.

3. For cylinders having high r/t ratios, the effect of initial
local imperfections on buckling strength is quickly minimized by internal
pressure. The more rigid the walls of the cylinder, the higher must be
the internal pressure to satisfactorily minimize the imperfections.

k. In studying unpressurized cylinders, the test specimens should
be as nearly free of initial imperfections as possible. The presence of
such imperfections critically influences the buckling strength of such
cylinders. ,

5. The theory of Lo, Crate, and Schwartz 'L%.B} is satisfactory for
determining the critical buckling strength of pressurized unstiffened
cylinders provided that the walls behave as a membrane.

6. Test cylinders of cellulose acetate can be buckled elastically
several times without materially effecting the critical buckling load.
This is true for both the pressurized and the unpressurized conditions.
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TABLE EI. - TEST RESULTS FOR CYLINDERS WITH r/t of 500.
Specimen - - -
Number ' p P Pcr c"cr ccr A Ocr
15 0 0 120.0 169.76 0.211 0
2L 0 o 99.0 140.05 0.175 0
28 0 0 108.0 152.78 0.191 0
29 0 0 130.0 183.91 0.230 0
30 0 0 133.0 188.15 0.235 0
15 1 0.625 223.3 315.90 0. 395 0.184
2L 1 0.625 171.3 2Lh2.34 0.303 0.128
28 1 0.625 233.3 330.05 0.413 0.222
29 1 0.625 250.3 354,10 0.4h43 0.213
30 1 0.625 253.3 358.34 0.LL8 0.213
15 2 1.250 186.6 263.98 0.330 0.119
2k 2 1.250 166.6 235.67 0.294 0.119
28 2 1.250 256.6 363.01 0.4L5k 0.263
29 2 1.250 256.6 363.01 0.L5h 0.224
30 2 1.250 259.6 367.26 0.459 0.224
15 3 1.875 172.9 24l 60 0. 305 0.09)
2l 3 1.875 1LL.9 204.99 0.256 0.081
28 3 1.875 314.9 Lh5. 49 0.557 0. 366
29 3 1.875 270.9 383.24 0.479 0.249
30 3 1.875 26L.9 374.75 0.468 0.233
2l N 2.500 133.2 188. Lk 0.236 0.061
28 N 2.500 293.2 L1h.79 0.518 0. 327
29 L 2.500 271.2 383.67 0.L79 0.249
30 L 2.500 263.2 372.35 0.L465 0.230
28 5 3.125 271.5 38L4.09 0.480 0.289
29 g 3.125 321.5 Lsh.83 0.568 0.338
28 6 3.750 2L49.8 353.39 0.442 .251
29 6 3.750 299.8 L2L.13 0.530 . 300




TABLE EII. - TEST RESULTS FOR CYLINDERS WITH r/t of 750.

=%=?==——-t
6 0 0 51 108. 24 0.202 0
7 0 0
8 0 0 52 110. 36 0. 207 0
9 0 0 30 63.67 0.119 0
1L 0 0 L1 87.02 0.163 0
16 0 0 25 53.06 0.099 0
21 0 0 L3 91.26 0.171 0
22 0 0
6 1 1.406 95.3 202, 27 0.379 0.177
7 1 1.406 113.3 240.47 0.451
8 1 1.406 113.3 240.47 0.451 0.2uh
9 1 1.406 131.3 278.67 0.521 0.402
, 14 1 1.406 118.3 251.08 0.471 0.308
16 1 1.406 104.3 221.37 0.415 0.316
| 21 1 1.406 136.3 289.28 0.289 0.118
; 22 1 1.L06 114.3 2L2.59 0.455
| 7 2 2.812 | 107.6 | 228.37 | 0.L28
| g 2 2.812 146.6 311.15 0.583 0.L6éhL
1L 2 2.812 W1.6 300.53 0.563 0.L400
16 2 2.812 126.6 268.70 0. 504 0.L05
21 2 2.812 139.6 296.29 0.555 | 0.384
22 2 2.812 113.6 2Lh1.11 0.L452
7 3 L.218 111.9 237.50 0.LL5
9 3 L.218 162.9 345,74 0.6L8 0.529
i 3 L.218 126.9 269. 3L 0.505 0.3h2
16 3 L.218 124.9 265.09 0.4L97 0.398
21 3 4.218 129.9 275.70 0.517 | 0.346
22 3 L.218 116.9 2L48.11 0.L65

103



TABLE EIT. - TEST RESULTS FOR CYLINDERS WITH r/t of 750-CONCLUDED.

Specimen - - -
Number p P Pcr ccr ccr Accr
7 L 5,625 153.2 325,15 0.609
9 L 5.625 133.2 287.70 0.530 0.411
i L 5.625 133.2 282,70 0.530 0.367
21 L 5.625 148.2 314.84 0.589 0.418
22 L 5.625 138.2 293,32 0.550
7 5 7.031 126.5 268.48 0.503
21 5 7.031 141.5 300. 32 0.563 0. 392
22 5 7.031 141.5 300. 32 0.563

Note: Values of Agbr
were not conducted on these cylinders in the unpressurized con-

dition.

are not given for cylinders 7 and 22 since tests
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TABLE EITI.- TEST RESULTS FOR CYLINDERS WITH r/t of 1000.

Sﬁi;t?in P P Pcr %er Ccr AGcr
11 0 0
17 0 0
18 0 0
26 0 0 21 59.42 0.1L48 0
31 0 0 31 87.72 0.219 0
32 0 0 31 87.72 0.219
11 1 2.50 88.3 2L9.8 0.624
17 1 2.50 68.3 193.26 0.L83
18 1 2.50 L8.3 136.67 0.3hL2
26 1 2.50 83.3 235.71 0.589 0.Ll1
31 1 2.50 83.3 235.71 0.589 0.370
32 1 2.50 97.3 275.32 0.688 0.469
11 2 5.00 66.6 188.45 0.471
17 2 5.00 73.6 208.25 0.521
18 2 5.00 7h.6 211.09 0.528
26 2 5.00 91.6 259.19 0.649 0.501
31 2 5.00 91.6 259.19 0.647 | 0.428
32 2 5.00 9.6 267.68 0.669 0.L50
17 3 7.50 79.9 226,08 0.565
18 3 7.50 79.9 226.08 0.565
26 3 7.50 87.9 2l8.72 0.622 | 0.L74
31 3 7.50 7h.9 211.94 0.530 | 0.311
32 3 7.50 97.9 277.02 0.693 0.47L
17 L 10.0 83.2 235.42 0.588
32 L 10.0 78.2 211. 27 0.553 0.334
Notes: 1. In Tables EI, EII and EIIT, is expressed in pounds;
Cop and p are expressed in psij 5, 5; and Agér are
dimensionless.
2. Unpressurized tests were not conducted on cylinders 11, 17, 18.



TABLE EIV.

- TEST RESULT AVERAGES

p P r/t Ecr AEcr

0 0 500 0.208 0

1 0.625 500 0.400 0.192
2 1.250 500 0.398 0.190
3 1.875 500 0.413 0.205
I 2.500 500 0.425 0.217
5 3.125 500 0.524 0.316
6 3.750 500 0.486 0.276
0 0 750 0.160 0

1 1.L406 750 0.429 0.261
2 2.812 750 0.5k 0.413
3 L.218 750 0.513 0.LoL
n 5.625 750 0.562 0.399
5 7.031 750 0.5L3 0.392
0 0 1000 0.195 0

1 2.50 1000 0.553 0.427
2 5.00 1000 0.581 0.L460
3 7.50 1000 0.595 0.420
L 10,00 1000 0.571 0.33L
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APPENDIX F

SHEAR LAG STUDY OF THREE INTEGRALLY STIFFENED PANELS

By William K. Rey

The contents of this appendix were previously submitted as Progress Re-
port No. L for NASA Contract NASB-11155.

120



SHEAR LAG STUDY OF THREE INTEGRAILY STIFFENED PANELS
By William K. Reyx
SUMMARY

An experimental study was conducted to determine the effect upon the
stress distribution in integrally stiffened panels of varying the ratio
of the stiffener area to the sheet area. Three aluminum alloy panels with
rectangular integral stiffeners were instrumented with foil strain gages
to determine the strain distribution in the stiffeners and the webs under
axial compressive loads. The ratio of the stiffener area to the sheet
area was approximately one-half, one and two in the three panels tested.
Each of the panels was tested under four different loading conditions.

The experimental results were compared with a theoretical analysis.
Relatively good agreement was obtained between the experimental results
and the theoretical analysis except for the section adjacent to the end
at which the load was applied.

INTRODUCTION

Integrally stiffened panels are being utilized in many structures
such as the thrust structure of the Saturn C-5 launch vehicle since this
type of construction provides the necessary strength with a minimum of
weight for certain types of loads. When a concentrated load is applied
to one of the stiffeners, the manner in which the load is distributed
through the panel is influenced by shearing deformations in the thin webs
that connect the stiffeners. This influence is commonly referred to as
shear lag. The precise stress distribution throughout a stiffened panel
must be known to permit the application of minimum weight design princi-
ples.

In a previous study (ref. F1), a survey of the literature indicated
a number of theoretical analyses were available for predicting the stress
distribution in stiffeéned panels but no experimental data were available

B *Professor of Aerospace Engineering, University of Alabama, Univer-
sity, Alabama and Project Director of NASA Contract NAS8-11155.
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for evaluating the different analyses when applied to integrally stiffened
panels. Data that are available for panels with stiffeners attached by
welding or riveting are of doubtful value when integrally stiffened panels
are considered. Furthermore, the data that are available for panels with
attached stiffeners were obtained by testing panels in which the total
stiffener area was greater than the sheet area whereas some of the inte-
grally stiffened panels of interest have a total stiffener area less than
the sheet area.

The test results in this report were obtained in the first phase of
an experimental program designed to provide stress distribution data for
integrally stiffened panels of various configurations. This phase of the
experimental study was undertaken to determine the effect on the stress
distribution of varying the ratio of the stiffener area to the sheet area
in integrally stiffened flat panels with constant cross-section stiffeners
of the same size. Additional tests are planned to investigate the effects
of varying the number of stiffeners, using stiffeners of different sizes
on the same panel and varying the stiffener area over the panel length.

In order to provide some measure of the effectiveness of the test
program, a matrix analysis of each panel based upon the Maxwell-Mohr meth-
od of analyzing statically indeterminate structures was accomplished.

When additional data become available from later phases of the fest pro-
gram, all of the experimental data will be compared with other theoret-
ical analyses.

EXPERTMENTAL INVESTIGATION

Specimens

Three integrally stiffened panels were prepared from a one inch thick
7075-T651 aluminum alloy plate. As indicated in Figure F1, each panel
consisted of seven uniformly spaced rectangular stiffeners of constant
cross-section. Each panel was twenty-four inches long in the direction
of loading by approximately seventeen and five-eights inches wide. The
cross-sections of the panels, identified as Panels B, C, and D, are shown
in Figures F2, F3, and Fl respectively.

Bonded resistance type foil strain gages with a gage length of one-
eighth of an inch were applied to each panel with a contact cement. As
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shown in Figure-F5, ninety-four uniaxial gages and twenty-four rectangu-
lar rosette gages were used on Panels B and C to provide a total of one
hundred and sixty-six strain gage chamnels. On Panel D, as shown in Fig-
ure F6, one hundred and ten uniaxial gages and twenty-four rectangular
rosette gages were used to supply one hundred and eighty-two strain gage
channels.

Machining of the three panels was accomplished in a shaper as shown
in Figure F7. Because of the limitations imposed by this machining oper-
ation, it was impossible to maintain tolerances as close as desired. The
actual cross-sectional dimensions shown in Figures F2, F3, and Fl indicate
the variations in web thickness and stiffener cross-sections. The dimen-
sions were very nearly constant over the twenty-four inch length. The
aluminum alloy used is stress-relieved by stretching after solution heat-
treatment. However, machining evidentally relieves additional stresses
which results in some warpage of the panels.

Equipment

Loading of the panels was accomplished by a hydraulic 60,000 pound
universal testing machine equipped with a load maintainer. Considerable
effort was expended in attempts to insure that loads were applied in the
desired manner. As shown in Figure F8, loads were applied so as to min-~
imize the introduction of any bending moment into the panels. Each of
the panels was tested under four different loading conditions which are
identified in Figure F9 as loading conditions I, IT, III, IV.

Each of the strain gage channels on the panels served as one of the
arms in a Wheatstone bridge circuit. In order to provide temperature
compensation, three foil gages mounted in small aluminum blocks (dummy
gage blocks) served as the other three arms of the Wheatstone bridge.
Each strain gage channel was equipped with an individual dummy gage
block in order to permit switching outside of the bridge and minimize
the effect of changes in contact resistance. The dummy blocks were mount-
ed in a frame adjacent to the testing machine as shown in Figure F10.

Current was applied to the Wheatstone bridges by a size 8D, 12-volt,
lead-acid storage battery. A variable resistor in series with each of
the bridge circuits permitted the voltage impressed on each bridge to be
reduced to approximately ten volts and provided the means for calibrating
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each bridge. The output of the bridge circuits was routed through a two
hundred channel cross-bar type switching unit to an amplifier. The out-
put of the amplifier was in turn supplied to a four digit digital volt-~
meter and a digital printer. An overall view of the testing machine and
associated instrumentation is shown in Figure F10. The control console
is shown in Figure F11 with the digital voltmeter at top, channel select-
or and indicator below the voltmeter, amplifier and amplifier power sup-
ply below the selector, digital printer below the amplifier and the power
supply for the printer at the bottom of the console.

: 'Figures F12 and F13 are photographs of the two sides of a panel po-
sitioned in the testing machine.

Test Procedure

. Prior to each test, current was applied to all the strain gage chan-
nels for a period of approximately one hour during which the temperature
of the panel increased due to heating by the gage current. Temperature
equilibrium in the panel was achieved prior to testing.

After :achiéving temperature equilibrium, a pre-load was applied to
the panel and all strain gage bridges were balanced and calibrated. Cal-
ibration was accomplished by shunting a known resistor across one arm of:
the bridge to simulate a pre-determined strain was indicated by the digi-
tal voltmeter. Periodically, during each test, the calibration was ver-
ified to compensate for any decay in the battery voltage.

For the loading conditions identified at<£; IT, and ITI in Figure
F9, a preliminary test was conducted to determine if the same load was
being applied to each of the loaded stiffeners and if the load was being
symmetrically supported by the base. This was accomplished by monitor-
ing all the strain gages on the loaded stiffeners and the strain gages
on all stiffeners at the section adjacent to the supporting base. This
preliminary test was also used to detect bending introduced by misalign-~
ment of the panel or loading fixtures. Adjustments were made on the bas-
is of the preliminary tests until satisfactory loading was achieved. Im-
provements in the supporting base and loading fixtures were made during
the test program to simplify the load balancing procedure. Therefore,
not all of the tests were conducted with exactly the same loading and
supportint fixtures. ’

For loading conditions I, IT, and ITI, loads were applied in 1000
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pound increments up to a maximum load of 5000 pounds on Panels B and C
and in 500 pound increments up to a maximum load of 2500 pounds on Panel
D. For loading condition IV, loads were applied in 500 pound increments
up to a maximum load of 2500 pounds on Panels B and C and in 250 pound
increments up to a maximum load of 1250 pounds on Panel D. At each in-
crement of load the strain was recorded by the digital printer for each
of the strain gage channels.

The data recorded by the digital printer was plotted as load versus
net strain for each of the strain gage channels. This preliminary plot
of the data was used to correct for any zero shift during testing and
also to detect inoperative gage channels or other apparent errors in the
data. From the corrected curves, the strain corresponding to a load of
1000 pounds was determined for each channel. This corrected strain was
used in a computer program to determine the stress at each of the gage
locations. For each rosette location, the computer program determined
the magnitude and direction of the principal stresses, the magnitude and
direction of the maximum shearing stress, the normal stresses parallel
and normal to the stiffeners and the shearing stress parallel to the stiff-

eners. The computer program is given in Appendix F1l in Fortran II.
MATRTX ANALYSIS

In order to provide a comparison between the experimental results
and one of the available theoretical analyses, an analysis based upon
the Maxwell-Mohr method was performed for each panel using matrix nota-
tion. This type of analysis is the same as the analysis referred to as
Method I in reference F1. The generalized force system employed in the
analysis is identified in Figure F1ll in which the generalized forces q

through Q,, Trepresent the axial forces in the stiffeners at the indi-
cated locations and Qs, through q,, represent the shear flow in the:

indicated web. The generalized force system is shown in greater detail
in Figure F15 for that portion of the panel between stiffeners 2 and
3 and between 2.7 and 5.7 inches from the loaded end. The forces
in the stiffeners, q, through Qaq» are assumed to be positive when

compressive and the shear flows, q,, through Qg2 are assumed posi-
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tive when the shear flow acts upward on the left-hand edge of a web ele-
ment as shown in Figure F15. The generalized force system was selected
to provide a direct comparison between the theoretical analysis and the
experimental results by providing a generalized force at each of the
strain gage locations in the stiffeners. The notation used in the ma=-

trix analysis corresponds to the notation used in reference F2.

; Matrix of Flexibility Coefficients

The matrix of flexibility coefficients, Elij] , isa 60 x 60

symmetrical matrix, given by

SR

Referring to Figures F1 and Flii for the necessary dimensions and denot-
ing the equivalent stiffener areas of stiffeners 1, 2, 3, and L as Al,

Az, As, A4, respectively, the 12); non-zero flexibility coefficients are:
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a = a -
3,3 4,4
a = g -
2,3 3,2
= -
av,s
. .
a10,10 als,le
-
a10,11 a11,10
=
a11,11 a17,17
=
a12,12 a15,1:5
=
a11,12 a12,11
=
a15,16
it
a19,19 a27 27
p |
a19,20 B azo,le
a_ =
20,20 azs,ze
-
a21,21 azz,zz
=
azo,z1 a21,20
a
24,26
=
aze,zs aas,se

2L2
a = 3 = a =
5,6 8, 7,7 §A1E
a = 3 = a ®* a = a =
3,4 4,3 4,8 5,4 6,6
a = T;EL
Ll
T
3A,
17,18 18,17 6A2E
+-T
L +L,
=
ﬂ;E
2L,
= o = = a
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= = = =
a12,15 13,12 a15,14 a14,15
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= = 3 =
a16,15 18,17 a17,16 6A2E
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+
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= a = a = a = 2L2
23,23 24,24 25,26 3A3E
= = = a = a
21,22 22,21 22, 23 23,22
= = = = L2
25,24 26, 26 azs,zs 6A3E
L1
T W
4

=
314,15

23,24

a
15,1

a

24,23

4

127



28,29

29,29
a
30,30

28,30

37,37

aSB,BB

46,46

a
48,46

a
63,63

S4,B64

29, 28
36, 35
8z1,21
30,290
33,34
%4444
830,30
262,52
47,47
80,80

6,58

1
a = =
36,36 36,35 BEE
+
L+L
3AE
2L2
a =a =a Y
32,32 33,33 34,34 3A4E
= = = e =
aso,al a31,ao a31,52 a32,51 ' aaz,aa asa,az
a = a = .
= a
34,33 34,36 36,34 EA;E
L1b1
Gt,

LDb

271
. = B ——
40,40 %a1,41 842,42 843,45 Gt,

L.b

1 2
Gt,

a = a =a = a = 2
48,48 49,49 650,60 61,51 Gt,
L,b,

Gt,
a a -
66,66 67,857 68,68 £9,59 Gt,

The remaining 3476 elements of Etij] are zero.

Unit External Load Matrix

The twenty-four generalized forces q,, through q._., q__ through and
11 18 20 q27

Qge thirough q,, Were selected as the redundants. The unit external load ma-

trix, [g”J - [ger » is a 60 x L matrix obtained by replacing the external

loads by unit loads.

The elements of the first column of [g ] represent the values of the

generallzed forces in the determlnate structure when P = ] and P2 - P:5 =P

= 0. They are:

4

[
n
[e>]



g,-, "8 =g -
151 2,1 3,1

- =
10,1 % B11,1 " 812

The elements of the second

and P, = Py=P, = 0, are:

=0
gl,z
gz,z = ga,z - g4,2 =

- - =
€11,2 12,2 iz, 2

R !
gav,z fﬂ;

- - -
838,2 g39,2 g40,2

=
g60,1

= gQ’l L

=0

column of [guJ s obtained by setting P . =1

=
€10,2

=
gae 2

-
g60,2

=1
=0

=0

The elements of the third column of E%JJ’ obtained by setting Ps =1

and P, = P,=P, =0, are:

€1, ° 0

€e,s €x,5 " B4
€10, - €i1,3 " iz 3
10,3 * 1

g - -
20,3 ~ Bz1 3 * B3z
-
€ar, ® T
=
€s8,5 * 30,5 ™ Byo,
k -
e, "

- =
g46’3 g;?,a g48,3

The elements of the fourth column of E%JJ, obtained

and P1 = Pe =P, =0, are:

® Eo.s

b

g
18,3

g
38,3

g
44,3

-
gBO’S

by setting P4 =]

-
)
O



g1,4 =0
g2,4 " ga,4 * 34,4 - * : ‘ - " g9,4 -1
€10, " 811 4" 8124 % - ‘ © T8 ," O
328,4 =1
gzs,4 * gso,4- g31,4 = ‘ ) - " gas,4 =0
€a7. 4 _%,_

? 1
€ss,4 * Bzo,4" Bao,a " - . : © "By~ O
g45,4 " %1
Bi0,0 " Ber s Bug o . : © " Bgp .~ O
€e3,4 © —%,_

’ 1
g54,4 = gss,; gae,4 s o * - = g60,4 =0

Unit Redundant Force Matrix

The unit redundant force matrix, [glr] = [gj; » is a 60 x 2} matrix.

The elements of this matrix are the values of the generalized forces when
the redundant forces are replaced by unit loads. The twenty-four redundants,

q,, through Q45 Qg through g, and Qg through q,., were identified as re-
dundants one through twenty-four, respectively ( q,, 25 redundant number ore,
Q,, a8 redundant number two, etc., with Qe a5 redundant number twenty-four).

For example, the elements in the first column of [gu] are the values of the
generalized forces when Q,, is replaced by a unit force while the other twenty-

three redundants are zero. The 138 non-zero elements of [glr are:

g =1
ll+n+9n1,1+nﬂn wmre ne o, l, 2,;.-00,7

g2+n,1+n+em = -1 anrd m= 0, 1, 2
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j

s‘ i 1
ga7+en, 148m —fl'

-1
Bse+en,146m = I_

-_ L
gae+en,z+em L,

- 1
g39+en,z+em 'i;

S
g59+en,a+em - Lz
¢ ..l

40+8n,3+8n L,

. el L

40+8n, 4+em L,
where m = 0, 1, 2

- 1 ¢ and n=0,1, ..... , m
g41+8n, 4+8m ]'_,2

=_ 1
€41+8n,5+em I,

. .l
42+8n,8+8m L,

.1
g4z+sn,e+em I,

-1
g4s+an,s+am L,

- i
g43+en,7+em "_Lz
g44+en,7+em —i;'

- 1
g44+an,e+em - -f: o

.

Exterriai Load Matrix
For the four 1oad1ng condltlons con31dered, the external load matrlx,

‘Ezmg 5. 18 a dlagonal matrix. To simplify computations, the external loads

were considered as unit loads. Therefore,
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P -

o+ oo
- © O O,

o O O H
o O - O

Matrix Computation

After forming the [ai:il s [gln;l s [glr , and [Pmr] matrices, the following

matrix operations were performed:

1. Evaluate fm = fri _aiﬂ [g jr;l where [gm_] is the transpose

of [gi::] .
. - = - - -
2. Bvaluate %rg) © _gri] fij][g.iS] )
a

3. Evaluate

_rs-l] , the inverse of E’lrs] .
L. Evaluate E'rmj - - [ars'l] [arn-_]'

5. Evaluate E}m—‘ - [g:un] + [gir] [Gm] )
é. Evaluate E]m: = [Glm] [Pmn] )

The matrix, Elln] , is a 60 x L matrix the elements of which represent

the magnitudes of the generalized forces for the four loading conditions

considered. In this case, since E’m] is a unit matrix, E;ln] = E}m] .

The computer program used for the above matrix computations is given in
Appendix F2.

The numerical values used in theimatrix analysis were as follows:

For all panels: L ,=~2.700", L_=3.000", E=10.5x106 psi,

G =3.9x108 psi.

For Panel B: b, =2.615L4", b, =2.6095", b, =2.6085"

t, =0.0985", ¢ -‘0.0935", t, = 0.0995"

Ny
o
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A, = 0.J11k in®, A_ = 0.5300 in2, A, = 0.5286 in%,

A, = 0.2698 in=.

For Panel C: b, = 2.840", b_ = 2.8L6", b, = 2.6085"

t, = 0.099", t, = 0.1015", t, = 0.09925"

s
L}

0.668l in®, A = 0.7917 in®, A, = 0.7908 in® ,

=3
"

0.3938 in=.

For Panel D: b = 2.7675", b, = 2.77675", b, = 2.770"
t, = 0.096", t_, = 0.1005", t, = 0.1005"

A, = 0.27L3 in?, A = 0.4139 in®, A_ = 0.L203 in®,

L
FN
"

0.2122 in=.

The resulis of the matrix analysis are given in Tables F1 through
FL4 for Panel B, Tables FS5 through F8 for Panel C and Tables F9 through
F12 for Panel D. In each of these tables, the stress in each stiffener
is given at nine locations corresponding to the locations of the general-
ized forces in the stiffeners and the shearing stress in each web is given

at eight locations.

DATA

The experimental data are given in Tables F13 through FL). The data
from two tests of Panel B for each of the four loading conditions are
given in Tables F13 through F20. The data from two tests of Panel C for
each of the four loadlng conditions are given in Tables F21 through F28.
The data from three tests of Panel D for each of the four loading condi-
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tions are given in Tables F29 through FLO. The averages of the three
tests of Panel D for each of the four loading conditions are given in
Tables FL1 through FLli. In each of these tables, the stress in each
stiffener is given at nine locations corresponding to the uniaxial strain
gage locations shown in Figures FS5 and F6. The state of stress at each
of the strain rosette locations shown in Figures F5 and F6 is expressed
in terms of the normal stress perpendicular to the stiffeners (ox), the

normal stress parallel to the stiffeners (cy), and the shearing stress
(Txy). Positive normal stresses are compressive stresses.

The results of the matrix analysis are plotted along with the exper-
imental results in Figures F16 through F75. For each of the four load-
ing conditions on a panel, the theoretical analysis and the experimental

results are shown in a series of five curves as follows:

a) the normal stress, cy, in each of the stiffeners versus the dis-

tance from the loaded end of the panel (Figures F16, F21, F26,
F31, F36, Fi1, FL6, F51, F56, F61, F66, F71);

b) the shearing stress, Txy, in each web versus the distance from

the loaded end of the panel (Figures F17, F22, F27, F32, F37,
Fl2, FL7, F52, F57, F62, F67, F72);

¢) the normal stress, cy, parallel to the stiffeners in each web

versus the distance from the loaded end of the panel (Figures
F18, F23, F28, F33, F38, FL3, FL8, F53, F58, F63, F8, F73);
d) the normal stress, Oys perpendicular to the stiffeners in each

web versus the distance from the loaded end of the panel (Figures
F19, F2h, F29, F3L, F39, FLkL, FL9, F5L, F59, Fbl, F69, F7L);
e) the chordwise distribution of the normal stress, cy, in the

stiffeners across eight panel sections (Figures F20, F25, F30,
F35, FLO, FL5, F50, F55, F60, F65, F70, F75).

ANALYSTIS OF RESULTS

The theoretically predicted distribution of the normal stress in the
stiffeners was in good agreement with the experimentally determined values
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for all panels although the agreement was not uniform throughout the pan-
els. In general, the largest difference between the theoretically pre-
dicted stresses in the stiffeners and the experimentally determined stress-
es occurred at the loaded end of the panel and the difference decreased
as the distance from the loaded end increased. In all panels for all
loading conditions, the theoretical and experimental stresses were very
nearly equal to each other at the supported end of the panel. In Panels
B and C the experimental stress was less than the theoretical stress in
the loaded stiffener at the section adjacent to the applied load whereas
in Panel D the experimental stress exceeded the theoretical stress at that
section. This difference in behavior of the three panels may be attrib-
uted to the relative size of the stiffeners. The experimental results
indicate that in Panels B and C the applied load was not uniformly dis-
tributed across the cross-section of the larger and thicker stiffeners

of these panels at the gage section 0.3 inch below the applied load re-
sulting in experimental stresses on the surface of the stiffeners less
than the theoretical stresses which were based upon an assumed uniform
distribution across a stiffener corss-section. In Panel D, with rela-
tively small stiffeners, the test results indicate that the load had not
diffused from the stiffener into the web at the section adjacent to the
applied load resulting in experimental stresses that were larger than the
theoretical stresses. As explained in reference 1, the analysis used as-
sumed that the effective stiffener area consisted of the actual stiffener
area plus one-half of the web area on each side of the stiffener. The
theoretical analysis and the experimental results indicate that the pan-
els were long enough to achieve an essentially uniform stress distribu-
tion across the cross-section at the supported end of the panel.

The experimentally determined shearing stresses in the webs agreed
very closely with the theoretical stresses at certain sections but were
in poor agreement at other sections. In general, the agreement was some-
what closer in Panels C and D than in Panel B. In all tests, the theo-
retical and experimental shearing stresses in the webs were nearly equal
in the webs adjacent to the loaded stiffener. The largest differences
between the theoretical and experimental shearing stresses in the webs
occurred in the webs farthest from the loaded stiffener and at sections
near the top (loaded end) of the panel. These differences may be due in
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part to the failure to achieve boundary conditions at the loaded end in
tests that correspond to the boundary conditions assumed in the theoret-
ical analysis.

The theoretical analysis assumed that the normal stress in the webs
acting perpendicular to the stiffeners was zero. The test results indi-
cate that at certain sections this normal stress was relatively large for
some of the loading conditions. However, the variation in this normal
stress over the panel length was frequently erratic. This normal stress
may have been introduced into the panel by the test boundary conditions
at both the loaded end and the supported end of the panel since strains
normal to the stiffeners were restrained. This restraint would produce
stresses in the web normal to the stiffeners.

As previously noted, the theoretical analysis was based upon an ef-
fective stiffener area that included the area of adjacent webs. There-
fore, the theoretical analysis assumed that the normal stress in the webs
acting parallel to the stiffeners was equal to the normal stress in the
stlffeners to whlch the webs were attached. Slnce the straln gauge ro-
settes were placed on the webs midway between the stlffeners, a direct
comparison of theoretical and experimental stress was not made. How-
ever, the experimental data indicates that, as the distance from the
loaded end of the panel increased, the normal stress in the webs acting
parallel to the stiffeners approached the normal stress in the stiffen-
ers in agreement with the stress distribution assumed for the idealized
panel.

CONCLUDING REMARKS

Since the three test panels were of the same general configuration
and only one theoretical analysis was considered, it is not possible to
make any broad generalizations concerning the validity of the theoretical
analysis. However, the general trend of agreement between the experi-
mental results and the theoretical analysis implies that a satisfactory
experimental procedure was employed and also that the idealized structure
and assumed stress distribution used in the theoretical analysis approach-
es the actual conditions. Since the realtive agreement between the theo-

retical and experimental results was the same for all three panels, the
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accuracy of the theoretical analysis appears to be independent of the ra-
tio of the stiffener area to the sheet area. The test results show that
the ratio of stiffener area to sheet area does affect the stress distri-.
bution in a stiffened panel.

The effects of varying the number of stiffeners, using stiffeners
of different sizes on the same panel and tapering the stiffener cross-
section over the length of the panel are now being investigatéd under
the terms of NASA Contract NAS8-2016L.
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APPENDIX F1

COMPUTER PROGRAM FOR REDUCTION OF TEST DATA

This program in Fortran II was used for test data obtained from 110

uniaxial gages and 2l rosette gages providing 182 strain gage chamnels.

Modifications were necessary when a different number of gages were used.

-~ O o

INPUT-OUTPUT FORMATS

FORMAT (LOX,SLHTHE FOLLOWING DATA ARE THE RESULT OF THE RESOLUTION
1 of,2/,35X,65HSTRESSES FROM STRAINS OBTAINED DURING A TESTING PROG
2RAM CONDUCTED,2/,35X,56HAT THE UNIVERSITY OF ALABAMA UNDER CONTRAC
3T NAS 8-11155.,3/,40X,24HALL STRESSES ARE IN PSI.,2/,LOX,48HALL AN
LGLES ARE IN DEG. MEASURED FROM THE X AXIS.,L/)

FORMAT (/,6F10.2,/)

FORMAT (36X,58HTHE FOLLOWING MATERIAL PROPERTIES ARE USED IN CALCU
1LATION, ,2/,36X,23HMODULUS OF ELASTICITY -,FlL.1,6X,21HMODULUS OF RI
2GIDITY -,FL.1,2/,52X,16HPOISSONS RATIO -,F15.8,3/)

FORMAT (LOX,245,/)

FORMAT (55X,BHTEST NO.,245,2/)

FORMAT (1L(13F6.1,/))

FORMAT (31X,17HUNIAXTAL GAGE NO.,13,6X,8HSTRAIN -,F7.1,6X,9HSIGMA
1Y -,F12.6,2/)

FORMAT (55X,11HROSETTE NO.,IL,2/,LOX,9HSIGMA X -,F12.6,9X,9HSIGMA
1y -,F12.6,2/,40X,9HSIGMA 1 -,F12.6,9X,9HTHETA 1 ~,F12.6,2/,L0X9HS
2IGMA 2 -,F12.6,9X,9HTHETA 2 -,F12.6,2/,L0X,9HSIGMA S -,F12.6,9X,5H
3THETA S -,F12.6,2/,L0X,8HTAU XY -,F12.6,10X,7HTAU S -,F12.6,2/)

START PROGRAM

DIMENSION GF(L), c(2), E(182), s(182), V(10)

PRINT 1,

READ 2, A, G, GF

C(1)=(4/(2.0%¢))-1.0 $ C(2)=A/(1.0-C(1)*C(1))
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10

11

12

21
22
31
32
23
13

L0

PRINT 3, A4, G, C(1)

READ L4, T, O

PRINT 5, T, O

READ 6, E

DO 11 I=1, 110

S(I)=2.0%E(I )+A/GF(1)

PRINT 7, (I, E(I), S(I), I=1,110)

DO 13 I=111,180,3

Do 12 J=1,3

E(I+J-1)=2.0%E(I+J-1)/GF(J+1)
V(8)=E(I)-E(I+1)+E(I+2) $ V(L)=C(2)*(E(I)+C(1)*E(I+2))
V(6)=C(2)=(E(I+2)+C(1)*E(T)) $ V(7)=(V(L)+V(6))/2.0
V(9)=(V(6)-V(L))/2.0 $ V(1)=C(2)*(V(8)+C(1)*E(I+1))
V(2)=C(2)*(E(1+1)+C(1)+¥(8)) $ V(8)=(V(1)-V(2))/2.0
V(10)=SQRT(V(9)+V(9)+V(8):7(8)) $ V(3)=V(7)-V(10)
V(5)=V(7)4V(10) $ V(L)=ARCTAN(V(9)/ABS(V(8)))

IF (V(8)) 21,22,23

V(6)=90.0%(V(L)/3.14159265-1.0) $ GO TO 13

IF (V(9)) 32,31,31

V(6)=-45.0 $ GO TO 13

V(6)=45.0 $ GO TO 13

V(6)=-v(L)*90.0/3.14159265

V(L)=90.0+V(6) $ V(B)=L45.0+V(6) $ PRINT 8, I, (V(J),1d=1,10)
IF (E(182)) 10, 10, 4O

STOP

END
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AFPENDIX F2
COMPUTER PROGRAM FOR MATRIX ANALYSIS

The following program in Fortran IV was used to perform the necessary

matrix computations.

C

5

13

20
21
29

33
30

MAIN ROUTINE

REAL 11, L2

DIMENSION GRI(2k,60),ARS(2L,2L),UNIT(2L,2L),GRM(2L,L),CARN(2L,k),
1.  ARN(2L,L),ATJ(60,60),TEMP2(60,k),GIR(60,2L),GIM(60,k),

2 GJN(60,L),QIN(60,L),TEMP1(3L,60),PMN(L,L),A(L)

EQUIVALENCE (ARS(1,1),GRI(1,1)), (UNIT(1,1),GRI(1,25)),(GRM(1,1),
1 GRI(1,L9)),(CARN(1,1),GRI(1,53)), (ARN(1,1),GRI(1,57)),

2 (TEMP2(1,1),A1J(1,1)),(GIR(1,1),ATd(1,5)), (GIM(1,1),ATJ(1,29))
3 ,(GJN(1,1),A19(1,33)),(GIN(1,1),ATd(,37))

DATA 11,12,B1,B2,B3/2.7,3.0,2.7675,2.77675,2.77/

DATA T1,T2,T3/0.096,0.1005,0.1005/,E,G/10.5E+6,3.9E+6/

DATA (A(I),I=1,L4)/0.2743,0.4139,0.4203,0.2122/

FORMAT (35H1THE UNIT REDUNDANT FORCE MATRIX IS///60(2(12F10.6,/),/)
1)

FORMAT(89HITHE MATRIX OF ‘FIEXIBILITY COEEFICIENTS IS (VALUES HAVE .
1BEEN SCALED BY A FACTOR OF 10x%%6)///60(5(6P12F10.6,/),/))
FORMAT(1BHITHE MATRIX ARN IS//).

FORMAT (22X,L£20.9,/)

FORMAT (58HITHE MATRIX ARS .IS SINGULAR. EXECUTION. HAS BEEN TERMINAT :
1ED/1H1)

FORMAT (1SH1THE MATRIX CARN IS//)

FORMAT (18H1THE MATRIX QIN IS//)

FORMAT (33H1THE UNIT EXTERNAL LOAD MATRIX IS///60(22X,LF10.6,/),/)
COMPUTE THE ELEMENTS OF THE MATRIX PMN

DO 30 I=1,k

DO 33 J=1,4

PMN(I,J)=0

PMN(I,I)=1

COMPUTE THE ELEMENTS OF THE MATRIX GRI WHICH IS THE TRANSPOSE OF



THE UNIT REDUNDANT FORCE MATRIX GIR.
DO 1 I=1,2L
DO 1 J=1,60
GRI(I,J) = O
DO 2 K=1,8
N = K-1
DO 2 1=1,3
M=L-1
GRI (1+N+8:M,11+N+9:M) = 1
GRI (1+N+8+M,2+N) = -1
DO 3 K=1,3
M= K-1
DO 3 L=1,K
N=L-1
GRI (1+8:M, 37+8+N )+=- =1 .0/L1
DO 4 I=1,6
GRI (I+8M, 37+I+8:N) = 1.0/L2
GRI (I+1+8:M,37+I+8+N) = -1.0/L2
GRI (7+8:M,LL+8:N) = 1.0/11
GRI (8+8sM,L4L+8:N) = -1.0/11
PRINT 5, GRI
COMPUTE THE MATRIX OF FLEXIBILITY COEFFICIENTS AIJ
DO 6 I=1,60
DO 6 J=1,60
ATI(I,J) = O
DO 7 I=1,4
T = L1/(3.0+E:A(T))
ATJ(9%1-8,9%1-8) = T
ATJ(9%I,9+%I) = T
T = 11/(6.0:ExA(T))
ATJ(9%1-8,9%I-7) = T
ATJ(9%T-1,9%I) = T
T = (L1+12)/(3.0:ExA(I))
ATJ(9%I-7,9%I-7) = T
ATJ(9%I-1,9%I-1) = T
T = (2.0%L2)/(3.0+E+A(I))

4
F

J



10

12

1L

DO 8 J=2,6
ATI(9%I-J,9%I~J) = T
T = 12/(6.0%E+A(I))
DO 7 J=1,6
ATJ(9I-~J-1,9%I-J) = T
T = (L1:B1l)/(G*T1)
ATJ(37,37) = T
ATJ(Lh,Lk) = T

T = (L2%B1)/(G*T1)
DO 9 I=38,43
ATJ(I,I) = T

T = (L1:+B2)/(G=T2)
ATJ(L5,U5) = T
ATJ(52,52) = T

T = (12xB2)/(G*T2)
DO 10 I=L6,51
ATJ(I,I) =T

T = (1L1#B3)/(G*T3)
ATJ(53,53) = T
ATJ(60,60) = T

T = (L2+B3)/(G*T3)
DO 11 I=54,59
ATJ(I,I) =T

DO 12 I=1,60

DO 12 J=I,60
ATJ(J,I) = ATJ(I,J)
PRINT 13, ((AIJ(I,J),J=1,60),I=1,60)

PERFORM THE MATRIX MULTTIPLICATION TEMP1 = GRI * AIJ.

DO 1l I=1,2h4

DO 1k J=1,60

TEMP1(I,J) = O

DO 1l K=1,60

TEMP1(I,J) = GRI(I,K)*ATJ(X,J)+TEMPL(I,J)
SET GIR EQUAL TO THE TRANSPOSE OF GRI.
DO 15 I=1,60

DO 15 J=1,2.4



15

16

17

18

19

23

GIR(I,J) = GRI(J,I)

CLEAR ALL ELEMENTS OF MATRIX GJN TO ZERO.
DO 16 I=1,60

DO 16 J=1,l

GJIN(I,J) = O

COMPUTE NON-ZERO ELFMENTS OF MATRIX GJN FROM FORMULAE.

DO 17 I=2,9

DO 17 J=1,L

GIJN(I,J) = 1

GJN(1,1) = 1

GJIN(10,2) = 1

GJIN(19,3) = 1

GJN(28,4) = 1

DO 18 I=2,)

GJIN(37,I) = 1.0/11

GJIN(L5,3) = 1.0/11

GIN(L5,L) = 1.0/11

GJN(53,4) = 1.0/1a1

PRINT Lk, ((GJIN(I,J),d=1,L),I=1,60)
PERFORM THE MATRIX MULTIPLICATION ARN = TEMP1 # GJN
DO 19 I=1,24

DO 19 J=1,L

ARN(I,J) = 0

DO 19 K=1,60

ARN(I,J) = TEMPL(I,K)+GJIN(K,J)+ARN(I,J)
PRINT 20

PRINT 21, ((ARN(I,J),J=1,)),I=1,24)
PERFORM THE MATRIX MULTIPLICATION ARS = TEMP1  GIR
DO 23 I=1,2L

DO 23 J=1,2)

ARS(I,J) =0

DO 23 K=1,60

ARS(I,J) = TEMP1(I,K)*GIR(K,J)+ARS(I,J)
SET UP IDENTITY MATRIX UNIT FOR INVERSION
DO 25 I=1,2),

DO 2k J=1,2}
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2L
25

28

27

26

35

34

Q

Q

UNIT(I,J) = O
UNIT(I,I) = 1

INVERT THE MATRIX ARS AND LEAVE RESULT IN THE MATRIX UNIT.

DO 32 M=1,2)

T = ARS(M,M)

IF(T.NE.0.0) GO TO 35

DO 26 J=M,2l
IF(ARS(J,M).EQ.0.0) GO TO 26
DO 27 L=M,2)

T = ARS(M,L)

ARS(M,L) = ARS(J,L)

ARS(J,L) = T

GO TO 28

CONTINUE

PRINT 29

STOP

K1 = M+1

DO 3L I=K1,L8

ARS(M,L) = ARS(M,L)/T

DO 32 k=1,2)

IF(K.EQ.M) GO TO 32

S = ARS(K,M)

K1 = M+l

DO 31 I=K1,L8

ARS(K,L) = ARS(K,L)-S+ARS(M,L)
CONTINUE

PERFORM THE MATRIX MULTIPLICATION GRM = -UNIT * ARN
DO 36 I=1,2)4

DO 36 J=1,4

GRM(I,J) = O

DO 36 K=1,2l4

GRM(I,J) = -UNIT(I,K)*ARN(K,J)+GRM(I,J)
PERFORM THE MATRIX MULTIPLICATION TEMP2 = GIR 3 GRM
DO 37 I=1,60

DO 37 J=1,L

TEMP2(I,J) = O



37

38

39

L2

DO 37 K=1,2L

TEMP2(I,J) = GIR(I,K)*GRM(K,J )+TEMP2(I,J)

PERFORM THE MATRIX ADDITION GIM = GJN + TEMP2

DO 38 I=1,60

DO 38 J=1,L

GIM(I,J) = GJN(I,J)+TEMP2(I,J)

PERFORM THE MATRIX MULTTPLICATION CARN = TEMP1l +GIM
DO 39 I=1,24

DO 39 J=1,L

CARN(I,J) = ©

DO 39 K=1,60

CARN(I,J) = TEMPL(I,K)*GIM(K,J)+CARN(I,J)
PRINT 1

PRINT 21, ((CARN(I,J),J=1,Lk),I=1,2L)
PERFORM THE MATRIX MULTIPLICATION QIN = GIM * PMN.
DO 42 I=1,60

DO L2 J=1,4

QIN(I,J) =0

DO 42 K=1,4

QIN(I,J) = GIM(I,K)*PMN(K,J)+QIN(I,J)
PRINT 43

PRINT 21, ((QIN(I,d),J=1,L),I=1,60)

STOP

END
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TABLE F1. - MATRIX ANATYSIS OF PANEL B FOR LOADING CONDITION I

P =1 kip
Stiff. | Web. |Stiff. | Web. | Stiff. | Web. | Stifr.
No. 1 No., 1| No. 2 No. 2| No. 3 No. 3| No. L
°y xy | % “xv | % “xv | %
0.3 | 2430.7 0 0 0
1.5 1195.6 L56.3 121.8
3.0 | 1657.8 382.6 156.1 121.3
L.5 650. 6 377.2 108.5
6.0 | 1190.5 SLs5.7 294.9 241.3
7.5 352.9 275.1 86.9
9.0 937.0 £96.9 391.9 337.5
10.5 197.3 188.1 6L.3
12.0 795.3 607.3 L55.4 408.6
13.5 111.9 122.5 LL. L
15.0 714.9 60L. 8 495.3 L57.8
16.5 62.4 74.8 28.3
18.0 670.1 600.0 519.0 489.0
19.5 31.0 39.3 15,2
21.0 647.8 596.5 531.3 505.9
22.5 9.2 12.0 L.7
23.7 6L41.9 595.4 53L4.6 510.6

TABLE F2. - MATRIX ANALYSIS OF PANEL B FOR IOADING CONDITION IT

P=1kip
Stiff. Web. |Stiff. Web. |Stiff. Web. |Stiff.
No, 1 No., 1 |No. 2 No. 2 |No. 3 No. 3 [No. 4
[e) T (e} T (e) T 0]
Y Xy y xy y Xy y
0.3 0 1886.8 0 0

1.5 -591.8 807.7 175.8

3.0 382.6 1205,1 296.4 175.0
h.5 -227.1 L11.0 134.8

6.0 shs.7 860.9 L38.4 324.2
7.5 -71.2 211.3 88.0

9.0 596.9 709.4 500, 8 L21.5
10.5 -1.5 114.0 53.7

12.0 607.3 6L1.0 531.0 L480.9
13.5 3.4 63.L 31.5

15.0 60L. 8 609.4 tL6.8 515.8
16.5 6.7 35.0 17.7

18.0 600.0 59h.6 555.4 535.4
19.5 L.9 17.3 8.8

21.0 596, 5 588.2 559.6 chs.1
22.5 1.7 5.1 2.6

23.7 595.4 586.5 560.7 sty
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TABIE F3. - MATRIX ANALYSIS OF PANEL B FOR LOADING CONDITION III
P = 1 kip
y Stiff. Web.| Stiff.| Web, | Stiff.| Web. | Stiff,
No. 1| No. 1| No. 2| No. 2 | No.,3 | No. 3| No. L
in. o T o T o T o
y Xy y xy | y xy y
0.3 0 0 1891.8 0
1.5 -241.L -876.6 L87.5
3.0 156.1 296.4 1225.4 L85.4
4.5 -193.4 -472.0 148.9
6.0 294.9 L38.4 890. 8 650.1
7.5 -134.9 -260.1 23.1
9.0 391.9 500.8 739.8 675.7
10.5 - 88.4 -150.2 - 12,7
12.0 | Ls5.4 531.0 667.2 661.6
13.5 ~ 55,6 - 88.4 - |- 18.1
15.0 L95.3 %6ﬁ‘ 630.5 6L1.7
16.5 - 33.0 v - 50.9 - 1.3
18.0 519.0 5550 ; 611.5 625.9
19.5 - 17.0 - 25.9 - 8.4
21.0 531.3 559.6 602.5 616.6
22.5 - 5.1 - 7.8 - 2.7
23.7 534.6 560.7 600.1 613 9

TABLE F);.- MATRIX ANALYSIS OF

PANEL B FOR LOADING CONDITION IV

P = 1 kip
y Stiff.| Web Stiff.| Web ! Stiff.| Web Stiff.
No. 1| No. 1 | No. 2| No. 2 |No. 3 | No. 3 | No. L
I
e % | Txy % | "w % | Txy %y
0.3 0 0 0 1853.2
1.5 -93.8 -282.5 -743.0
3.0 60.7 87.5 2L2.7 1113.4
4.5 -83.6 -229.0 -361.0
6.0 120.7 162,1 325.1 714.0
7.5 -66.9 -162.5 -175.3
9.0 168. 8 210.8 337.9 520.0
10.5 -49.5 -108.3 - 89.3
12.0 20L.3 20,5 330.8 L21.2
13.5 -34.2 - 69.0 - L7.2
15.0 228.9 257.9 320.9 369.0
16.5 -21.8 - L1, - 25.0
18.0 2.5 268.7 313.0 3L1.4
19.5 -11.7 - 21.5 - 12.0
21.0 253.0 272.6 308.3 328.1
22.5 - 3.6 - 6.5 - 3.5
23.7 2C5. 3 273.9 307.0 32L4.6

[
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TABLE F5. - MATRIX ANALYSIS OF PANEL C FOR LOADING CONDITION I
P =1 kip
y Stiff. | Web Stiff. | Web Stiff. | Web Stiff.
No. 1 |No. 1 |[No. 2 |No. 2 | No. 3 |No. 3 No. L
. % | Txy °% | ™xy % | "xy %y
0.3 1496.1 0 0 0
1.5 938.6 324.1 91.2
3.0 1120.7 20L4.7 81.4 62.1
L.5 587.4 283.3 8.2
6.0 859.8 316.1 158.8 125.7
7.5 363.6 | 22L.6 71.9
9.0 698.2 366.1 218.2 180.1
10.5 227.4 167.5 57.3
12,0 597.2 387.0 261.1 223.4
13.5 141.6 118,2 L2.6
15.0 53L4.3 394.6 290.6 255.6
16.5 8L.8 77.2 28.9
18.0 L496.6 396.7 309.4 277.4
19.5 LL.3 k2.5 16.4
21.0 476.9 397.0 319.6 289.9
22.5 13.5 13.3 5.2
23.7 L71.5 396.9 322.5 293.4

TABLE F6. - MATRIX ANALYSIS OF PANEL C

FOR LOADING CONDITION II

P =1 kip
y Stiff. { Web Stiff. | Web Stiff. | Web Stiff,
No. 1 |No. 1 |No, 2 [No. 2 |No. 3 |No. 3} No. L4
in. 0‘y TXY Uy_ TXY Cy "L'xy Uy
0.3 0 1263.1 0 0
1.5 -511.9 631.7 139.5
3.0 20L.7 871.6 171.6 95.0
L.s -250,7 359.7 115.0
6.0 316.1 639.2 266.9 181.9
7.5 -112.6 203.4 83.3
9.0 366.1 518.8 313.8 2LL.9
10.5 - 47.0 118.0 56.4
12,0 387.0 L55.7 338.0 287.5
13.5 - 17.2 69.2 36.4
15.0 394.6 L22.7 350.9 315.1
16.5 - 4.8 39.7 22.1
18.0 396.7 L05.6 357.9 331.8
19.5 - 0.6 20.1 11.5
21.0 397.0 397.7 361.3 340.5
22.5 0.1 6.1 3.5
23.7 396.9 395.6 362.2 342.8
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TABLE F7. - MATRIX ANATYSIS OF PANEL C FOR LOADING CONDITION III

P =1 kip
y Stiff. | Web Stiff.| Web Stiff. | Web Stiff,
No. 1 fNo. 1 |No. 2 [ No. 2 |No. 3 {No. 3 |No. L
in, Gy Txy cry Txy cy Txy oy
0.3 0 0 126L.5 0
1.5 -203.6 -694.14 LO8. L4
3.0 81.4 171.6 885.5 277.9
L.5 -174.1 -L417.4 166.5
6.0 158.8 266.9 662.1 L03.8
7.5 -133.7 -252.6 52.9
9.0 218.2 313.8 5Lk.9 Lk3 8
10.5 - 96.6 -157.1 7.5
12.0 261.1 338.0 481.6 Lh9.5
13.5 - 66.3 - 98.3 - 7.6
15,0 290.6 350.9 LL6.6 LL3.7
16.5 - 42.3 - 59.4 - 9.9
18.0 309.4 357.9 L27.5 L36.2
19.5 - 23.0 - 31.3 - 7.0
21.0 319.6 361.3 L18.0 L31.0
22.5 - 7.1 - 9.6 - 2.h
23.7 322.5 362.2 L415.5 L29.3

TABLE F8. - MATRIX ANALYSIS OF PANEL C FOR IOADING CONDITION IV

P = 1 kip
y Stiff. | Web Stiff.| Web Stiff, | Web Stiff,
No. 1 [No. 1 |[No. 2 | No. 2 |No. 3 |No. 3 | No.
in hd O'*' Tv" 0'" Tvv 0" Tv" C'"

[ J ~J v ay J g J ]
0.3 0 0 0 1269.7
1.5 -77.6 -212.2 -627.7
3.0 31.0 L7.5 139.0 842.5
h.s -71.7 -182.9 -354.3
6.0 62.9 90.9 201.9 574.6
7.5 -61.1 -141.5 -197.8
9.0 90.0 122.4 221.9 425.1

10.5 -48.7 -103.0 -112.9

12.0 111.7 143.8 224.8 339.7

13.5 -36.3 - 71.2 - 65.1

15.0 127.8 157.5 221.9 290.5

16.5 -24.6 - 45.7 - 36.8

18.0 138.7 165.9 218.1 262.7

19.5 -13.9 - 24.9 - 18.%

21.0 k.9 170.2 215.5 24,8.8

22.5 - L. - 7.7 - 5.5

23.7 146.7 171.4 21k, 7 245.0
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TABLE F9, - MATRIX ANALYSIS OF PANEL D FOR LOADING CONDITION I

P = 1 kip
y Stiff. | Web Stiff. | Web Stiff, | Web Stiff.
No. 1 |No. 1 |[No. 2 |No. 2| No. 3 | No. 3 | No. L
in, Oy Txy Uy Txy Cy ’txy Oy
0.3 3645.6 0 0 0
1.5 1423.9 504.6 1.7
3.0 2300.1 560, 9 234.3 181.2
L.5 706.8 399.6 123.0
6.0 1558.1 761.6 Lh32.7 355.9
7.5 350.5 273.4 9L.0
9.0 1190.0 806.4 561.4 L89.4
10.5 181.1 174.7 65.7
12,0 999.9 805.1 639.6 £82.9
13.5 96.0 106.8 L2.9
15.0 899.1 794.1 685. 1 6L43.9
16.5 50.6 61.7 26.0
18.0 846.0 784.4 711.0 680.7
19.5 2.2 31.1 13.5
21.0 820.6 778.5 723.7 699.9
22.5 7.0 9.3 L.1
23.7 814.0 776.8 727.0 705.1

TABLE F10. - MATRIX ANALYSIS OF PANEL D FOR LOADING CONDITION II
P =1 kip
y Stiff.| Web Stiff.| Web Stiff. | Web Stiff.
No. 1 | No. 1| No. 2 |No. 2| No. 3 | No. 3| No. 4
in, o] T o T o T o}
y Xy y xy y xy y
0.3 0 21,16.0 0 0
1.5 -593.6 849.1 197.9
3.0 560.9 1487.7 L20.L 253.0
L.s -191.1 401.8 145.5
6.0 761.6 1062.0 60L. 2 459.8
7.5 - h2.7 193.7 89.3
9.0 806.4 891.2 679.1 586, 7
10.5 12.4 99.3 51.3
12.0 805.1 819.7 713.6 659.5
13.5 10.5 £2.9 28.%5
15.0 794.1 788.5 731.1 700.0
16.5 9.3 28.1 15.3
18.0 784.4 77L.5 7L0. 3 721.6
19.5 5.6 13.5 7.3
21.0 778.5 768.¢ 7hl. 8 732.0
22.5 1.8 L.O 2.1
23.7 776.8 e IICH O 73u.zg
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TBIE F11.- MATRIX ANALYSIS OF PANEL D FOR LOADING CONDITION III

P = 1 kip
y Stiff.| Web | Stiff.| Web | Stiff.| Web Stiff.
No, 1| No. 1 : No. 2| No. 2 | No. 3| No. 3| No. L
. % | Txy v | Txy % | Txy %y
0.3 0 0 2379.3 0
1.5 -21;8.0 -878.1 507.7
3.0 234.3 420.4 1484.5 602.1
L.s -189.0 -432.9 135.6
6.0 L32.7 604. 2 1076. 8 841.8
7.5 -122.5 -219.9 13.3
9.0 561.4 679.1 909.6 860.6
10.5 - 74.5 -118.4 - 15.4
12.0 639.6 713.6 835.7 838.7
13.5 - 43.6 - 65.7 - 17.0
15.0 685.4 731.1 800.7 81k.6
16.5 - 2h.L - 36.0 - 12.1
18.0 711.0 740.3 783.6 797.3
19.5 - 12.1 - 17.7 - 6.7
21,0 723.7 7L4.8 775.8 787.8
22.5 - 3.6 - 5,2 - 2.1
23.7 727.0 7L6.0 773.8 785.1

TABLE Fl2. - MATRIX ANALYSIS OF PANEL D FOR LOADING CONDITION IV

P = 1 kip
y Stiff.{ Web Stiff.] Web Stiff.| Web Stiff.
No. 1| No. 1| No. 2§ No. 2 | No. 3| No. 3| No. 4
= "y xy “y Xy “y "Xy y
0.3 0 0 0 2356.3
1.5 -9509 . ‘28)405 "78703
3.0 90.6 126.5 | 324.6 1349.5
L.s -83.2 -221.L -355.6
6.0 178.0 229.9 L20.9 8LL. 2
7.5 -63.6 -147.9 -161.0
9.0 2Lk 7 293.L 430.3 615.4
10.5 -Lk.5 - 92.5 - 77.2
12.0 291.4 329.8 L19.4 505.,7
13.5 -29.0 - 55.5 - 38.7
15.0 321.9 350.0 L07.3 450.8
16.5 -17.6 - 31.7 - 19.6
18.0 340.4 360.8 398.7 L22.9
19.5 - 9.1 - 15.8 - 9.2
21.0 350.0 366.0 393.9 409.8
22.5 - 2.8 - L.7 - 2.6
23.7 352.6 367.4 392.5 L06.5
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FIGURE F20. - CHORDWISE DISTRIBUTION OF STIFFENER NORMAL
STRESS IN PANEL B FOR LOADING CONDITION I.
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FIGURE F25. - GHORBWISE DISTRIBUTION OF STIFFENER NORMAL
STRESS IN PANEL B FOR LOADING CONDITION II.
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FIGURE F65. - CHORDWISE DISTRIBUTION OF STIFFENER NORMAL
STRESS IN PANEL D FOR LOADING CONDITION II.
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FIGURE F70. - CHORDWISE DISTRIBUTION OF STIFFENER NORMAL
STRESS IN PANEL D FOR LOADING CONDITION III.

254



255

*AT NOILTIANOD DNIQVOT ¥0d 0 TANV A0 SUHNHAALIS NI SSHHIS TVIWHON - *Tld HYNOILA

iISd * 4D * ss3uls u3INZLIUS

000¥ O09E 002t 0082 O00¥2 0002 0091 O021 008 OOFP O ooy O ooy O ooy O

\V4 »e

18!

V== =V 39v¥3aav 1S31
TVOIL3YO3HL
disd

1 §!

el

S3IHONI * £ av01 Q3INddY WON4 3INVISIO

Jj 2ON YV I'ON
#'ON ¥3N343US N3N34JILS  Y¥3N343US  ¥3INILHUS




0

*AT NOLLIGNOD ¥O04 4 TINV A0 €¥M NI SSHULS ONTUVEHS - *2lJ TUNDLI

1Sd* X3 'g3am NI SS3UIS ONINVIHS

00l- 002- 00€- OO¥- 00S- 009- OOL-

008-

Y
v
\
\)
\

Ve— = = 39VH3AY 1S3l
AVILLIHO3HL
diyisd

€ON @3Mm

0

00l- 002- 00¢-

1ve

16!

S3HONI * £ ‘ GvOT Q31NddV WOMd 3INVLISIO

256




*AT NOLIIANOD DNIQYOT ¥0d d TENVd A0 €M NI SSHUIS TVWHON - *€.J4 HYNDLA

Isd ‘Lo
000! 0SL 00¢ 0¢e 0 00¢ 0¢2 0 00¢ 062 OtN
v ; Y
! . \ . ! 112
\ \
v \V %
) [ \
~ i . - \ {1
! [} \
AV \% 4
/ | \
/ s [ 4 \ 46!
v v v
/ i \
? 4 1 5 \ 121
’ 1 \
v v X
7 1 ' y \ 16
PR \ \
_v v %
\\ / \
-~ \ ~ \ 49
4 V= = =V 39v43Av 1S31 \ \
¢ disd N 4
N 4 ~ . Je
~ - L
v/ Sy 1 %
i J i 0
SON 83m ZON 83Mm I'ON 83M

257

A *Qvo1 G3Nddy Wous 3ONviSIa

S3IHONI



*AT NOLLIQNOD DNIAVOT ¥O4 @ TENVd 40 €3M NI SSTUIS 'TVIWMON - “Tld TYNOIA

258

e

18!

18!

1sd * *o
00 OO0 082 002 OSI 00l 10, (o] 0%- 00I- 0os oS- o0 | (0] 0
s ~ ﬂ q/
~ N v o \
I‘ \ N
A A 4
b ~
- J -
\
v
\
V= = =V 3I9VH3AV 1831 [ /N
aN I=d ¥ { P
= \\ - fi / -
/ 7
\q AV AM
7 \
/ A -~ -
' / N
v v v
-—— - Jv - '
— —— B / . -
“““ \
V= - v
J J J

S3HOMI * £ ‘ QvO1 Q3Nddv WON4 3INVLSIC




STIFFENER STRESS, Oy , PSI

i Prikip A
TEST AVERAGE A--A J/
1500 .
/
/
1000 | ,
Ve
8001 ”,
y:3 A
0 /l\g-—‘_’ N )
1000 A
/,’
-
00f .4 _a-
————A——__‘—
oA}-:"’ N . ]
- -=A
S00 | y=9 ‘—_A“___
——"'___A__——
ok . .
5004X yeiz P A
— e -———— A——
0 . .
sor e N N
y=is
$00
_______ A——-—-—--A_..._.______A
y=i8
0 L . ) d
=
soo‘f _______ N N K
o y=ai , .
500___ g
T ys23z - °° Ae —— - - o Ag.l
0! \ . ] 5
° 3 ¢ 9 0O

DISTANCE FROM PANEL EDGE, X ,INCHES

A

FIGURE F75. - CHORDWISE DISTRIBUTION OF STIFFENER NORMAL
STRESS IN PANEL D FOR IOADING CONDITION IV.

259



APPENDIX G

COMPARTSON OF SEVERAL ANALYTICAI, SOLUTIONS TO
THE SHEAR LAG PROBLEM WITH EXPERIMENTAL DATA

By Dennis M. Rigsby

The contents of this appendix were previously submitted as Progress Re-
port No. 5 for NASA Contract NAS8-11155 and were also submitted as a
Master's Thesis in the Department of Aerospace Engineering of the Univer-

sity of Alabama.
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APPENDIX G

TABLE OF SYMBOLS
cross sectional area of stiffener, in? when used with a sub-
script., Also used as an arbitrary constant in Appendix C.
area of flange, in2
area of stiffener, in2
one half panel width, in
arbitrary constant used in Appendix C
distance between stiffeners, in

distance from centroid of flange to centroid of areas of re-
maining stiffeners, in

distance from centroid of flange to centroid of substitute-
single stringer, in

constant

differential operator denoting g;

base of natural logarithms

Young's modulus

end load used in Appendix B

modulus of rigidity

unit matrix

dimensionlgss parameter used in stress function solution,
ke = QL+ )

dimensionlgss parameter used in stress function solution,

= y
ky_(1+-f_:-)

parameter used in minimum potential energy equations, Appendix
B, k =.5t
‘ bEA_
s
length of panel

coefficient matrix used in differential equation solution, Ap-
pendix A
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e

in minimum potential energy solution,

A
t

X

in stress function solution

»
-

number of stringers in half panel or when used as a subscript it
represents the number of the stiffener or panel under considera-
tion

origin of cartesian coordinate system

applied axial load, pounds

uniform stress at infinity, psi

average normal stress in direction 0y, psi
average normal stress in direction Oy’ psi

shear flow, 1b/in
circumferential distance
thickness of sheet material

area of reinforcing material added in direction Ox’ per unit width
of sheet

area of reinforcing material added in direction O_, per unit width
of sheet y

end ioad, siress function soluiion, pounds
load at infinity, pounds

strain energy

variable used in stress function solution
angle of rotation, stringer-sheet solution
shearing strain

normal strain

A
0.04712

roots to transcendental equation, stress function solution and
stringer sheet solution
262



parameter used in differential equation solution
Polsson®s ratio

ratio of circumference of circle to diameter, approximately
3.1416

normal stress
shearing stress

stress function

variable used in minimum potential energy solution

n
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COMPARISON OF SEVERAL ANALYTICAL SOILUTIONS TO

THE SHEAR LAG PROBLEM WITH EXPERIMENTAL DATA
By Dennis M. Rigsbys*
INTRODUCTION

Shear lag is the term commonly used to describe the influence that
shearing deformations have on the stress distribution in sheet-stringer
types of construction Eé]l. Experimental evidence has shown that the
stress distribution in sheet-stringer structures subjected to bending
cannot be adequately predicted by the elementary flexure theory. The dif-
ference between the stress distribution predicted by elementary flexure
theory and the experimentally determined distribution is due in part to
the fact that the theoretical assumption that plane sections remain plane
after bending is not satisfied in sheet-stringer structures. If plane
csections remained palne after bending, the sheet between stringers would
have to have infinite shearing rigidity, i. e., no shearing strains. Since
the thin sheet between stiffeners actually has very little shear stiffness
and the sheet suffers large shearing deformations under load, the assump-
tion of infinite shearing rigidity is not satisfied in this type of struc-
ture. As a result of these shear deformations, the stresses in the string-
ers are less than the predicted stresses. Since the stringer stresses lag
behind predicted values, the effect has been described as shear lag.

Thus, the problem of the stress analyst is the determination of the
stress distribution in box beams taking into consideration shearing strains.
In a hollow, rectangular box beam under pure bending, the surface under
compression behaves as a flat, stiffened panel subjected to an axial com-
pressive load. In this appendix a flat stiffened panel under axial load

has been investigated.

*Grgduate‘Stugent in Aerospace Engineering, University of Alabama,
Uniggrsity, Alabama and Graduate Research Assistant for NASA Contract NAS8-
11155.

1Numbers in brackets refer to references at the end of this appendix.
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Survey of Previous Work

Although many investigators have obtained solutions to the shear lag
problem, all of their solutions appear to have shortcomings. Because of
the simplifying assumptions made, some of the less rigorous solutions are
valid only for certain special cases, while some of the more mathemati~-
cally rigorous solutions are quite cumbersome to apply.

One of the first investigators in the United States to give much at-
tention to the problem was Younger in 1930 @30] . He presented formulas
for the efficiency of a box beam with walls of uniform thickness, which
may be considered as the limiting case of a large number of very small
stringers. His analysis was limited by the assumption of a constant cross
section.

Many investigators attempted to solve the problem by first deriving
the differential equations of equilibrium of either the stringers or the
sheet material and then solving the equations for the stresses by one of
several methods. Winny @29] s one of the early British investigators,
obtained a Fourier series solution to the differential equations of equi-
iiviium cf the stresses in the skin between the spars of a stressed skin
wing. Kuhn [G2(§] proposed a numerical integration type solution for the
differential equations. Goodey [GlB] solved the differential equations
of equilibrium of the stringer forces using the minimum potential energy
theory and the calculus of variations.

In 1946 Goodey E}IBJ published a comprehensive series of articles
each concerned with some aspect of the problem of shear lag, or stress
diffusion, as it is known to the British. His method of spproach required
the determination of a stress function for the particular system under
consideration. The stress functions he obtained led to expressions for
the stresses which are difficult to use; however, his expressions based
on the minimum potential energy theory, mentioned earlier, are very easy
to apply.

Borsari and Yu EB] conducted theoretical and experimental investi-
gations of the distribution of strains in a plywood sheet-stringer com-
bination used as the chord member of a box beam acted upon by bending
loads. The theoretical solution was obtained with the help of the prin--
ciple of minimum potential energy and certain simplifying assumptions.
Strain measurements were made on a built-up box beam by means of elec-

trical resistance strain gages. A satisfactory agreement between the
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theoretical and experimental strains was reported.

Fine l?l@] developed a stress function for the spanwise stress in
the flat surface of a box beam under uniformly distributed transverse
load. He compared the stresses obtained from this solution with those
predicted by the stringer-sheet solution. The two solutions were in
good agreement.

Kuhn [(}19] proposed a solution based upon the use of a substitute
single stringer in place of the actual stringers. It was necessary to
use a successive approximation method for locating the substitute single
stringer. In view of the approximate nature of the solution, Kuhn con-
sidered the successive approximations an unwarranted complication. For
this reason he developed an empirical one-step method to locate the sub-
stitute single stringer l?ZQ] . For the empirical determination of the
location of the substitute single stringer, shear strain measurements
alongside the flanges of three panels of constant section and two panels
of variable section were used. Two panels with tapered flanges and a
small number of stringers were also investigated. An empirical factor
was chosen based upon the comparison of these tests with theoretical
strains predicted by the substitute stringer method. The resulting so-
lution permitted the analysis of multistringer panels with very little
computational effort. Results of this type of analysis were good and
the method found wide acceptance in industry.

Akao @i] proposed a stress analysis of a rib-stiffened plate based
upon the uss of groups of orthogonal statieally indeterminate force func-
tions. These eigenfunction groups are presented as finite difference
equations.

Several investigators have made experimental studies of shear lag.
White and Antz @28_] reported an investigation made of the stress distri-
bution in thin reinforced panels. Test specimens were constructed of
Alclad aluminum sheet reinforced with extruded bulb angles. Results were
compared with strains predicted by theory based on the differential equa-
tions of equilibrium of the axial forces in the stiffeners. Agreement
between experiment and theory indicated the method was well founded.

Lovett and Rodee E}Z]] conducted an experimental investigation of
two beams composed of I-sections connected by a stiffened sheet subjected

to a uniform bending moment. The result of the investigation was the




determination of an effective shear modulus for the sheet in the sheet-
stringer combination. It was found that the modulus decreases rapidly
under light loadings from the elastic value to some other value depend-
ing upon the sheet thickness. The thick sheet gave higher values of ef-
fective shear modulus than the thin sheet.

Chiarito [GB] reported the results of tests made on two aluminum
alloy box beams with corrugated covers. Angles formed from sheet were
used for corner flanges in one beam while extruded angles were used for
the corner flanges in the other beam. Electric strain gages were used
to measure strains in each beam. The experimental results compared fav-
orably with theoretical results obtained by the substitute-single-~string-
er theory.

Chiarito E)ré] also reported the results of an experimental investi-
gation of two box beams loaded to destruction in an effort to verify the
shear lag theory at stresses beyond the yield point. An open box beam
made of 2LS-T aluminum alloy and steel bulkheads was used for the tests.
The theoretical and experimental stresses were in good agreement.

Peterson [G2IJ reported the results of tests which were mace on a
beam having more camber than is likely to be found in an actual wing in
order to determine whether the substitute single stringer theory might
be applied over the entire practical range of camber. Results indicated
that the elementary theory overestimates the maximum stress and the sub-
stivuve-single-stringer thecry underestimates it.

In addition to the purely theoretical and experimental solutions
already mentioned, some effort has been directed towards an ahalog type
solubion. Newton [G23] in 1945 and Ross [G27] in 1947 proposed a solu-
tion based upon the analogy between the distribution of stresses in flat
stiffened panels and the distribution of electric current in a ladder
type resistance network. The application of this method is limited be-
cause the panel must be divided into a finite number of bays having con-
stant stresses. Results of this method were reported to have good agree-
ment with experimental data.

Goland [612] established an analogy between the stress flow in flat
stringer-sheet panels and the plane potential flow in an incompressible
fluid. The author did not give numerical examples or experimental veri-
fication of the method.

The use of a mechanical analogy was proposed by Kuhn [Glé]. Here,
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again, the division of the panel into a finite number of bays limits the
method.

In the investigation of the bending vibrations of box beams, it is
first necessary to determine the shape of the deformed beam due to a stat-
ic loading. If the effect of shearing deformations are ignored and the
elementary theory is used to predict the mode shapes, the predicted na-
tural frequencies can be greatly in error from the actual frequencies.
Davenport and Kruszewski Eﬂﬂ found that by using the substitute-single-~
stringer method in calculating the static stresses and deformations of
the beam, the resulting calculated natural frequencies and mode shapes

were in much better agreement with experiment.

Purpose and Scope

The objectives of this study were: (1) to consider several of the
existing analytical solutions to the shear lag problem, (2) to apply these
solutions to a panel with particular properties and loading conditions,
(3) to solve for the stress distribution in the panel, and (L) to compare
the results of the various theories with experimental data for the same
panel with the main objective being the determination of the best method
of shear lag analysis.

The following theoretical solutions are treated:

Appendix G1 - Differential equation solution.

Appendix G2 - Minimum potential energy equations.

Appendix G3 - Stress function solution.

Appendix Gl - Substitute-single-stringer method.

Appendix G5 - Minimum energy solution using matrix methods.

COMPARTSON OF ANALYTTCAL SOLUTIONS WITH EXPERIMENTAL DATA.

Experimental Data

Panels B and C referred to in this appendix correspond to panels B
and C in Appendix F. Details of the experimental procedure, data reduc-

tion, and construction of the test panels are given in Appendix F.

Differential Equation Solution
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The differential equations of equilibrium of the normal stresses in
the stringers of a stringer-sheet combination are derived in Appendix Gl
and one method of solving these equations is presented as a numerical ex-
ample. The solutions are presented as a linear combination of exponen-
tial functions. Results of this solution are compared with experimental
data in Figures G3 and G4 for panels B and C, respectively. Examination
of Figures G3 and GL reveals the following information:

1. The theoretical curves and the experimental values for the nor-
mal stresses in the stringers indicate the same type stress dis-
tribution within the panel. For the loaded stringer, both methods
indicate a stress equal to P/A at the loaded end with the value
decreasing exponentially as the distance from the loaded end in-
creases. For the stringer adjacent to the loaded stringer, theory
and experiment both indicate normal stresses which increase from
zero at the loaded end to a maximum stress then slowly decrease
as the distance from the loaded end increases. For the remain-~
ing two stringers, theory predicts stresses which increase from
zero at the loaded end to some higher value then decrease slowly
as the distance from the loaded end increases. The experimental
values increase from zero at the loaded end, but do not reach
some maximum value then decrease as did the theoretically pre-
dicted stresses.

2. Agreement between theory and experiment is poor except at the
loaded end. The theoretically predicted stresses for stringers
1, 2, and 3 are non-conservative. For stringer L of panel C the
predicted stresses are conservative up to a point about 7 inches
from the loaded end then they, too, become non-conservative. In
panel B the predicted stresses in stringer L are conservative up
to a point about 15 inches from the loaded end.

3. Overall agreement between theory and experiment is better for
panel B than for panel C.

Minimum Potential Energy Equations.

Goodey's analysis Eﬂqj of the diffusion of end load into a panel
having (2N-1) stringers is presented in Appendix G2. His final equations
have the form of a finite sume of terms involving trigonometric and expo-
nential functions. As analysis of the diffusion of a 2000 pound end load
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in panels B and C was made using these equations. Results of this analysis
are presented in Figures G5 and G6 along with experimental data for com-
parison. Examination of Figures G5 and G6 reveal the following informa-
tion:

1. Both experimental and theoretical results indicate that, at some
distance from the loaded end, the end load is uniformly distri-
buted among the stringers.

2. For the loaded stringer, the agreement between theory and experi-
ment is good with the best agreement at the loaded end. For pan-
el B, the agreement is poor except at the loaded end. Agreement
between theory and experiment for the unloaded stringers in panel
C is fair.

3. Theoretically predicted stresses are conservative.

Stress Function Solution

A stress function for a panel reinforced at the loaded end perpendi-
cular to the stringer is presented in Appendix G3. Although panel C does
not have a reinforced end, a comparison is made between the analytical
solution and experimental data in Figure G7. Agreement between theory
and experiment is not, and was not expected to be, good. The method is
presented because it represents another approach to the problem, although
for a slightly different configuration.

The stringer-sheet theory is also given in Appendix G3. This repre-
sents one of the easier theories to apply; however, it can only be applied
to the loaded stringer as a quick investigation of the equation will re-
veal. This analysis was applied to the loaded stringers of panels B and
C and the results plotted in Figures G8 and G9 with experimental data.
Investigation of the two curves indicates good agreement between theory
and experiment, the theoretical solution being slightly non-conservative

in one region and slightly conservative in another.

The Substitute Single Stringer Method

The method for analyzing multistringer panels using a substitute
stringer is presented in Appendix Gli. Results of this method applied to
panels B and C having a 2000 pound end load are presented in Figures G110

and Gl1 with experimental data. Due to the nature of the solution, stresses
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in the unloaded stringers cannot be predicted; however, it can be seen
from the curves that the stresses in the substitute stringer are quite
close to the stresses in the stringer adjacent to the loaded stringer.
Agreement between predicted stresses and experimental stresses in the

loaded stringer is also good.

Minimum Energy Solution Using Matrix Methods

An outline of the analysis of panels B and C utilizing matrix methods
based upon the Maxwell-Mohr method is presented in Appendix G5. A de-
tailed analysis of this type would be practically impossible without the
aid of a digital computer. The Univac 1107, located at the University of
Alabama Research Institute, Huntsville, Alabama, was used. Results of
these analyses are presented in Figures G12 and G13 with experimental data.
This analysis was performed in the preparation of Appendix F.

For panel B, the agreement between theory and experiment is fair,
better agreement existing in stringer L than in the others. The theory
is conservative throughout most of the panel. Better overall agreement
between theory and experiment exist in the case of panel C, but in this
case stringer L does not exhibit as good agreement as in panel B. Also,

theoretical stresses in stringer L were on the non-conservative side.
CONCLUSTONS

As was previously, stated, the main objective of this phase of the
contract was the comparison of several existing theories of shear lag an-
alysis with some of the experimental data. The conclusions reported in
this appendix are based on the comparison of the theoretically predicted
normal stresses in the stringers with the experimentally determined normal
stresses. The conclusions would probably be different if normal and shear-
ing stresses in the sheet had been included in the analyses and comparisons.
The comparisons led to the conclusion that the best method of analysis con-
sists of a combination of the methods studied rather than any one method
by itself. Based on the comparisons reported, the following methods of
analysis are suggested:

Based on Accuracy
1. If it is only desired to predict the stresses in the loaded
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stringer, either the stringer-sheet theory or the substitute-
single-stringer theory should be used. The agreement between
theory and experiment is about the same for both methods.

If it is desired to predict the state of stress in the loaded
stringer and approximate the stresses in the adjacent stringers,
the substitute-single-stringer method is preferable.

If it is desired to predict the stresses in each stringer of the
panel, the analysis based on the solution of the differential
equations of equilibrium of the normal stresses using minimum
potential energy considerations is preferable. The stringer-
sheet theory or substitute-single-stringer theory could be used
at the same time to predict the stresses in the loaded stringer.

Based on Time Required to Perform Analysis

If it is desired to perform a quick analysis, the substitute-
single-stringer method is suggested.

If it is desired to obtain a more complete picture of the stress
distribution in the panel than the substitute-single-stringer
method allows, use of the minimum potential energy equations is:
suggested.

The other methods of analysis discussed in the preceeding chapter
take much more time to perform than either of the two above and

could not be used to perform a quick analysis.

- Based on the Type of Structure to Which the
Solution is Applicable

Since the experimental data used for purposes of comparison was
obtained from simple structures, i.e., ones having constant skin
thickness and equally spaced stiffeners having the same constant
area, a great deal cannot be said about the applicability of the
various methods to other structures. It would seem probable,
based on the form of equations involved, that the matrix method
solution presented in Appendix F would apply to more configura-
tions than would any of the other methods.
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Recommendations

Time did not permit a study of all of the available methods of solu-

tion.

Among the methods which have been omitted might be a better method

than any reported in this appendix. The research reported herein. should

be continued using the following analytical methods or analogies for com-

parison:

1.
2.
3.
L.
5.

Akao's finite difference equations,
Fine's stress function solution,
Goland's hydrodynamic analogy,

Ross and Newton's electrical analogy,
Kuhn's mechanical analog.

The research should be further continued to include the analysis of
panels having

l.

Fw

O

unequally spaced stiffeners,

stiffeners with different areas,

variable skin thickness,

stiffeners which have areas varying along the length of the
panel,

skin which varies along the length of the panel,
combinations of the above.

n
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APPENDIX Gl
DIFFERENTTAL EQUATTION SOLUTION

Figure G1-1 represents one-half of a longitudinally stiffened panel,
symmetric about the center line, subjected to an axial compressive load
on the outer stringer. From Figure Gl-1b, a free-body diagram of the
outer normal stresses and the sheet carries only shearing stresses, sum-
ming forces in the vertical direction,

(ci + dcl)A1 - Tytdx - o;A = 0,

or

dcl "

_d_.x - A_j'_rrl = (0, (Gl‘l)

From Gl-lc, a free-body diagram of stringer 2,

Tltdx + (02 + dcz)A2 - 0'2A2 - T,tdx = 0,

2
or
do,
_2'_ —(T, -T,) =0 (G1-2)
dx 2 1 :
From Gl-1d, a free-body diagram of stringer 3,
+ - - =
thdx + (03 dc'3)A3 03A3 T3tdx 0,
or
dc_3__t_(f.; -
ax A, '3~ "2) =o0. (G1-3)

3

In general,

dch £
= - 'g("’n - Tpy) = 0

or
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Al A2 A3 Ah
L
1”77777 1777777 ’/7’7//77//1’II’I//////I’A//7’/////’
by b2 b3
(a)
(crl + dol)Al (02 + <i<72)1\2 (03 +d03)A3
l 'rltdx , l'rztdx 1 ‘
[
(b) 1 (e) (d)
c>'1A1 02A2 03,13

FIGURE G1-1. - LONGITUDINALLY STIFFENED PANEL SUBJECTED TO AXIAL IOAD.

|
7

LY

] “s‘ X _
o,x | T~ £ (0 - 9)
\ === m= Syt
£ ! ox
B3
X
‘.-—...._b]-.___.1

FIGURE G1-2. ~ SECTION OF SHEET USED IN DETERMINING SHEAR STRAIN.
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= "5y - Tn1? - (G1-L)

2
d %n -t d":n - -1 (G1-5)
dx2 An dx dx

If we assume tan Y = v ; then from Figure Gl-2 the shear strain

at station x is given by

= X )
Y1 "5 ‘91 - 9% - (G1-6)
The incrememt of shear strain is

(o, - 0,)
dy = 1bE 2 dx, (G1-7)

The increment of shear stresses is

¥ ¢
& C b.E (o) - o) (G1-8)

or, in general,

av
2.8 ( ) (61-9)
dx "B E ‘n " %ne1’ -
n
Substituting Equation G1-9 into Equation G1-5,
2
k- S D ) - == ( )
2 KX |BE °n %41’ "FE -1 %]
dx n|{ n n
Assuming bn = constant = b,
2
d “n _ Gt 2
dxz - bA E ‘" %n+1 T %1 ¢ (G1-10)

Numerical Example
The value of An is determined from the dimensions of the left hand

stringer shown in Figure G2. Thus,
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An = (0.556)(1.0) = 0.556.
This value is used throughout although the actual areas of the other
stringers differ by a small amount. The value of b is giwvenby the dis-
tance between the centroid of the left hand stringer and the adjacent
stringer. Thus,

0,556 0.556
b===

+ 2,273 + —11— = 2,829,

The mechanical properties of the material are

G = 13.9)(10%) psi,

E = (10.5)(1@6) psi.
Substituting properties of panel C ihto Equation G1-10 for stringer

1, 2, 3, and 4 yields

2 0
ik DR € K ¢ LIp TR D) [26 “op-of ]
dx>  (2.829)(0.556)¢10.5)(10%)L ! 2

— = o.ounza1 - 0.0235605 (G1-11)
dx
2

= 0.047120, - 0.023560, - 0.023560, (G1-12)
6203
T;Er = 0.02356 (20, - o, - o,]

= 0,047120, - 0.023560, - 0.023560, (G1-13)
dzau
e = 0.02356]20, - o - o] .

Since the panel has 7 stringers and is symmetric about the center

line,

ro
\Q
o



O = 0, by symmetry.
dza

4 (G1-1L)
—7 = 0.047120, - v.047120,

Writing Equations G1-11, G1-12, G1-13, and G1-1l in matrix notation

o) L0L712 -,02356 0 0 ; o
5 % -.02356 .04712 -.02356 0 i o,
D = (G1-15)
03 0 -.02356 04712 ~,02356 03
chj 0o 0 -.04712 .04712J o,
2

where D2 denotes Jlf .
dax®

The characteristic equation is obtained from the matrix

r.0.04712 -\  -0.02356 0 0
-0.02356 0.04712 - %  -0.02356 0
0 -0.02356 0,04712 - )  -0.02356
0 0 -0.04712  0.04712 - 3 |

setting its determinant equal to zero

1-% -1/2 0 Y
-1/2 1 -Y% -1/2 0
=0
0 -1/2 1-% -1/2
0 0 -1 1%
where Y = o.—oﬁ'm .
Expanding the determinant
v o e 2 Loy 400125 =0, (G1-16)

The roots to Equation Al6 are

%, = 0.6103445
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Zz = 0.0761025
Z3 = 1,9135555
Yy, = 1.3999975
so that
A = 0.02875943
Ay = 0.00358594
A3 = 0,09016673
Ay = 0.06596788

The solution to Equation g1-15 is

= Y
! |
o K
2 2
. [,WX} (G1-17)
o3 ks
[ %] [ %

where M is the coefficient matrix of Equation G1-15. The term e vix is

most easily determined from the relation

e‘m":e' 1x, +e_\/ﬁxz + @ VA3X, +e°i:“xz (G1-18)

1 2 3 4

where the z's are given by

Og = 22200 = a0y =)z = (M = 1M - A3DXM - 5, 1) (G1-19)
O = A0 = Ad0 - a2z, = (1 = 3 IDMM - 3 10(M - ), 1) (G1-20)
Oz = A0 = 20005 - )z = (M -\ ID(M - AID(M - 3, 1) (G1-21)
Oy = 200 = 200 - Ag)Z, = (M = A 1M - 5,I)(M - 3 ,D) (G1-22)

where I is the unit matrix.

Performing the caleulatione indicated:
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N
L]

N
w
]

-
0.43689435
0.31665946
-0.17716203

-0.45472678

—

0.06816075
0.13602883
0.17771962

0.19236764

[ 0.06863274
-0.13604887
0.18572910

-0.20329288

" 0.42631324
-0.31663507

~-0.18628016

0.46565096

At x .= 0,

VX g

0.31665946
0.25973232
-0.13806731

~-0.35432402

0.13602883
0.24588038
0.32839648

0.35543923

~-0.13604887
0.25436184
-0.33934175

0.37145820

-0.31663507
0.24003309
0.14901589

-0.37256030

-0.17716203
-0,13806731
0.08257029

0.17859217

0.17771962
0.32839648
0.42360001

0.46442530

0.18572910
-0.33934175
0.44009096

-0.47539065

-0.18628016
0.14901589
0.05375296

-0.16761910

So that equation G1-17 becomes

- - -

Also at x = 0,

0 0
1 0
0 0 1
0 0 O

0

0

- - -

-0.22736339
-0.17716203
0.08929606

0.25973235

0.09618382
0.17771962
0.23221266

0.24588037

-0.10164644
0.18572910
-0.23769531

0.25436184

0.23282548 |
-0.18628016

-0.08380958

0.24003311

(G1-23)

(G1-2L)

(G1-25)

(G1-26)

(G1-27)

Ny
)
w



%

9

Therefore

x
n

Kkl
L]

L3
]

§ x 1800

, from Equation G1-27

1800

o.

The solution of Equation G1-15 is thus

Pa; [0.43689435 0.31665946 -0.17716203 -0.22736339 |
o £0.36958605x 0.31665946 0.25973232 -0.13806731 -0.17716203
oy -0.17716203 -0,13806731 0.08257029 0.08929606
o, ] -0.45472678 -0.35432402 0.17859217 0.25973235 |
0.06816075 0.13602883 0.17771962 0.09618382
 .-0.059882718x 0.13602883 0.24588038 0.32839648 0.17771962
0.17771962 0.32839648 0.42360001 0.23221266
0.19236764 0.35543923 0.46442530 0.24588037
[ 006863274 -0.13604887 0.18572910 -0.10164644]
. (-0.30027775 [-0-13604887 0.25436184 -0.33934175 0.18572910
0.18572910 -0.33934175 0.44009096 -0.23763531
-0.20329288 -0.37145820 -0.47539065 0.25436184
0.42631324 -0.31663507 -0.18628016 0.23282548] | 1800
. o-0.25684213x|~0- 31663507 0.24003309 0.14901589 -0.18628016) || o
-0.18628016 0.14901589 0.05375296 -0.08380958] || o
0.46565096 -0.37256030 -0.16761910 0.24003311 | 0
L - L -
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or

0'1 = [0-43689u35e-0‘16958605*

+ 0.06863274¢~0-30027775x

02 = [0-31665946e-0'16958605x

- aaMNnN7 '3
- 0.13604887¢" 0+ 30027775x

oy = 1-0.17716203¢ 0 16958605x

+ 0.18572910¢0-30027775x

o, = [ -0.45u72678¢ 0 16938605x

- °~203292886-0’30027775x

The stresses obtained from the
GL along with the experimental data.

+ 0.06816075e

-0.059882718x

+ 0.4263132ue0:2°684213x 7, 400

-0.059882718x

- 25 k1
+ 0.31663507e 0+25684213x 1, o

0.18628016e0-2°684213x 7 154

~-0.059882718x

+ 0,1923676ke

0.46565096e 0 +27684213x 1 1 o

+

above solution are plotted in Figure
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APPENDIX G2

MINIMUM POTENTIAL ENERGY EQUATIONS

Goodey [GlB] presented an analysis of the diffusion of an end

load into a panel with (2N-1) stringers. In this solution, the

stringers are treated as discrete members separated by panels of skin

which transmit only shear stresses,

The panel considered is shown in Figure G2-1 where the notation

used is also given,

Following is an outline of the analysis:

1.

5.

Considering elements of the stringers and longerons, differ-

ential equations of equilibrium of the forces were obtained.
Equations from step 1 were integrated from x to .

The differential equation for the total strain energy, U,
for half the complete panel was derived.

Conditions of minimum strain energy were then obtained by

Ta wmwaal .3
e ueLinoud o

applying t
tegral for U, resulting in N independent equations. These

equations were then substituted into the results of step 2

yielding a set of second order differential equations,

A solution was assumed for the equations in step 4,

6. Through the use of boundary conditions, various trigonometric

7.

identities, and algebraic manipulations, the constants of

integration were evaluated.

The final solutions were presented as follows:

N)

)

N



LONGERON AREA: A END LOADS

(Nem-§)To Fo o
— — — > o
NOS. ! STResses % Fi .
2 . . T
n % Fe R
N-1I -1 Fu-1 : ::
N %W Fu .
. To
SKIN — To
THLCKNESS -1
4\ ~+ To
- — - + mTo
(Nem- *)To

AREA OF ONE STRINGER = Ag

zl®

Q132
dF, dF
Fo ~—{——F—=F+3 8 Fo—l ___J—Fo+ T8 8
Qi t8x qt3x
ELEMENT OF n™ ELEMENT OF LONGERON
STRINGER OR EDGE MEMBER
QQ'Sl
———
o =—f  }—=Fus {20
—
Qyt8x
ELEMENT OF
N'™ STRINGER

FIGURE G2-1. - NOTATION USED IN MINIMUM POTENTTAL
ENERGY SOLUTION.
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T =] i ]
[cos(2Np_)sin(2N-1)0_] e 2kx(sin®r)
1 (G2-2)
M = e
; 2
81n¢r N + v
=1 1+4m(m-1)sin"¢_
Fn
7 =Sl+(2N+2M-1) .
(00]
r=N [cos(2N(pr)c032(N_n)(pr] o -2kx(singr)
o -1 (G2-3)
N + 2 3
1+4m(m-1)sin e
r=1

E

A 1/2
_A _‘ at I IS S
where m = g » k = ’ (Pr = N+ r 1 to N,

For the special case when m = 1 the above equations reduced

to

F r=N
o _ 2 -2kxsin®,

T_ =1 + 2 zcos (pl_ e (Gz—h)
@ r=1

F = 9 .

T_n =1 + 2 c:osq>rcos(2N+1)q>r o 2kxsin@r (G2-5)
o r=1

Numerical Example

Consider panel C as shown in Figure G2. Tt is assumed that all
stiffener areas are the same and that b = 2,84 = constant, t = 0.1 =
constant, This panel is, according to Goodey's nomenclature, a 5
stringer, 2 longeron panel, Thus

2N-1 =5
N =3,
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Since the areas of the stiffeners are assumed to be equal, the

ratio of longeron area to stringer area is

m:>| L">

so that equations G2-4 and G2-5 can be used. Remembering that

(pr= =

2L m radians
2N+1 7 °

then

2 ~2kxsin®,

1 + 2 coscpre

5o
H

e}

N

=1 4 2 (coszgple_kaslwl . c082¢2e-kxsmtvz
+ cos2¢r)3e_2kx81m3) . (G2-6)
Substituting the value of ¢, into Equation G2-6,
Fs 0.86836kx 1.5634k
T =1+ 2(?.8119u5e— . + 0,388939% " x
00
+ 0.049461¢ L -97H8%kx)
] (G2-7)
Using equation G2-5 for stringer 1,
Fy : 2xksi
1 -2xksin@.
T =1 + 2 Zcoscprcos?upre .
o o)
r=1
Substituting the value of ?.,
Fro -0.86836kx ~1.563kkx
= =1+ 2(q.199576e ' - 0.561796e " *
®
(G2-8)
) 0.438925e-1.94978kx) .
Using equation G2-5 for stringer 2
F2 r=3 . .
7 =1+ ZZ:cos<,or__c.1085q)r ¢ Zkxsiney .
[0 0]
r=1
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Sutstituting the value of L

F
T-2 =1+ 2(—0.561589e-0'86836kx - 0.138874e"1-7634kx
00
+ 0.200652e“1'9““78k") : (G2-9)
Likewise for stringer 3
F
"‘r‘3 =1 + 2(-0.90082e'°'86836k" + 0.62365e " 1+263bkx
00
- 0.22268e‘1'9“978‘°‘) ) (62-10)

Equations G2-7, G2-8, G2-9 and G2-10 apply to any 7 stringer panel with

m =1 and b and t constant. Thus they can be used for the analysis of
panel B as well as C, the only difference being in the value of k.

Numerical evaluation of the above equations was performed at in-
crements of x = 1 inch from x = 0 to x = 24, To expedite these calcu-
lations, a digital computer program was written for the Univac Solid
State 80 which is on the University of Alabama's main campus, The
machine language used was Bama-Bell IT which is a floating point mathe-~
matical interpretative system for the USS 80.2

The program used follows:

200 1556901000
201 1506901000
202 0600000000
203 0800000005
204 1201100109
205 6400400000
206 3400109300

2Gray, William J,: Bama-Bell II, Floating Point Mathematical
Interpretative System for USS 80 System. University of Alabama Computer

[ar-ST Y pun
voliiLel
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207 3103300301

208 R601301301
209 3106301301
210 3104300302
211 R601302302
212 3107302302
213 3105300303

214 R601303303

215 3108303303
216 1301302302
217 1302303303
218 3102303401
219 1101401401
220 3401100401
221 1241400401
222 1101400400
223 7000023206
224 7000003202
225 1260000000
226 R403000000
zzz 200 Note: the z's must be a double punch nine over

eight.

Writing the equations to be evaluated in the general form

Fn
T = 1 4+ Z(Cle
00

-0.86836kx . Cée-1:5634kx + Cse—1.97489kx) ,

the following shows the necessary data locations for use of the above
given program:

100 L (in floating point)

ey
S
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101

102

103

104

105

106

107

108

109

5010000000
5020000000
4986836000
5015634000

5019497800

(negative)
(negative)
(negative)
(in floating point)
(in floating point)
(in floating point)

(in floating point)

The print out, in floating point, is of the form:

x f(x)

x f(xl)

X, f(xz )
5124000000 £(24)

For panel C having a 1000 load on each longeron,

To = O BSE7Y+2(0 56307200 S618)30 5513 © 009.86

2000

6 1/2
« = (3.9)(107)(0.1) -I = 0.15355.

(10.5)(106)(2.su)(o.5552_|

Equations G2-7, G2-8, G2-9 and G2-10 are shown plotted in Figure G6

along with experimental data for comparison.
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APPENDIX G3

STRESS FUNCTION SOLUTION

Goodey EILﬂ presented a stress function type solution for the
analysis of a plane sheet reinforced in two directions at right angles,
This analysis was as follows:

Referring to Figure G3-1, the following equations were obtained for

the stiffeners.

== ( )
x T8 I - ko, (G3-1)
== ( )
€y °E 9y "~ bOy, (G3-2)
T
E Xy
G=ﬂ—5=—'
T €xy (G3-3)

Defining the average normal stress as

Psheet + Pstiffener

?
Asheet + Astiffener

the average stress in direction 0x is

to + tx(oi - uo.)

y _ -
t + tx =Py (G3-L)

and the average stress in direction 0y is

to_ + ty(o. - uo.)
y y x _
t + ty =P . (G3-5)

Defining

kx t’

(G3-6)

i
-
+
"
=
»
n
"
+
(24
]

and .

tky =t + ty, (G3-7)

303



y
c_+ 3y
Area of stiffeners

y
at
Txy * 5§§¥ dy - tx per unit width
o, = . a& - of sheet
= x ox
ar
oy Txy + 5251 dx
ELEMENT OF SHEET
x

Area of stiffeners = ty per

unit width of sheet.
= e ‘% Section of sheet and
stiffeners normal to

10)

=
Section of sheet and stiffeners
normal to OY
FIGURE G3-1. - DIAGRAM OF PLAIN SHEET REINFORCED IN TWO DIRECTIONS AT
RIGHT ANGILES.

~d

Tangent at P

FIGURE G3-2. - VIEW OF CROSS-SECTION LOOKING ALONG 0Z IN POSITIVE
304
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Substituting Equations G3-6 and G3-7 into Equations G3-L and G3-5,
yields, after some manipulation,

1
Px =0, - p.Uy(l - Tc;) (G3-8)

P

1
y =%~ wo (1 - T(;). (G3-9)

Distributing the area of the stiffeners in the x direction uni-

formly over the sheet results in the free-body diagrams of Figure G3-3.

i =
CT‘ 1 Tx

tdx Ex :la-rxy dy]

Jy
(t"‘tx) ‘ P agx
(t+t_Ddy(o + ave ax
(t+tx)dy L 5 - X X ve ox
ave Y]
l‘“—=—.———yv
ﬂxydx
FIGURE G3~3. - FREE-BODY SHOWING FORCES IN x DIRECTION
ACTING ON ELEMENT OF SHEET AND STRINGER
Summation of forces in the x direction yields
aaxave a.‘:xy
(t + tx) 5ttt 3y - 0. (G3-10)

Substituting Equation G3-4 into Equation G3-10 for Ux results in

ave
37t
9. o+ ( - o)t 4 ted = 0
5= O’xt‘ O ~ M vy x y ) (@3-11)
From Equation G3-l,
R a.txy 3 a‘tx
5% Ot * @ttt sap R(ter) 4+ tmld
a-cx 3
= tT;! + E(kaxt) (@3-12)
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or

v * kxax = 0. (G3-13)

Similarly, the area of the stiffeners in the y direction may be
distributed and forces summed in the y direction. The following equa-

tion results

o7 opP

2+ x40, (G3-1L)

Equations G3-13 and G3-1l are satisfied if we express the stresses

in terms of a stress function s, where
Txy = T 3@y (G3-15)
2
x k. .2 (G3-16)
x 9

1
— R G3-

Substituting Equations G3-8 and G3-9 into Equations G3-1 and G3-2

and rewriting Equation G3-3 yields

Ee =P - Py-kE (G3-18)
e, =R - P f‘y (G3-19)
Eexy = 2(1 + p.)'t'xy . (G3-~20)

Now, using the relations,



ov
e -
y Oy
_3v+au
‘xy 5% * 3y
p - L2
x k - 2
x Oy
1 3%
e 3
LR
. . 3%
xy 30y

and substituting into Equations G3-18, G3-19, and G3-20

2 2

Q
Kic
Q
L2
(o))
o

=L k1
Tk k Xk

y Xy

(G3-21)

e
E

X

»
%}

9

1
BT ° ¢

<

1
- (G3-22)

Je
s

25

X

<
@
L]

2
dv _ du) _ 2%
E(Tx + 3;) = 2(1 + p)(- m) . (G3-23)

Differentiating Equation G3-21 twice with respect to y,

331.1 aq@ U au‘f’

1
= e - . (G3‘2h)
E‘—za Dy Koyt 5K ay%ay2

Differentiating Equation G3-22 twice with respect to x,

. (G3-25)
xky oy gx

Adding Equations G3-2L and G3-25 then substituting Equation G3-23 yields

4 4 la@
1979 1 3% 1 3% _
b ] LR TE IR T te T =0. (G3-26)
y Ox xy |} 9x 9y x dy
If kx = ky = 1, this equation reduces to the familiar equation Vucb =0
for a piane un-reinforced sheet
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Assume a solution of Equation G3-26 of the form
$ = (Acoshal)\y + Bcoshaz)\y) simx (63-27)

where ay and a, satisfy the equation

au 2 1 2 + Lo 0 8
el B p(l - E—F—) a =Y (G3-28)
x xy y
or
2 2
a a 2
1 2 1 1 1 .
—_—, =1 4 p,(l - ) % 1 + p,(]. —_—) Y w ? (G3'29)
kx kx kxky kxky kxky
and A and B are constants.
The stresses are now given by the equations
< = 2% = \2cosax[Aa_ sinha Ay + Bu,sinha\y (G3-30)
xy  OxXdy 1 1 2 2 ?
kP = 2% “= 2%simx Aa Zcosha \y + Ba,Zcosha,\y (63-31)
x'x 5;2' 1 1 2 2 ’ 3-3
p 3% o A Beosh
WPy = g;_ = -\"simx [ Acosha\y + Bcosha\y). (63-32)

In order to satisfy the condition Py = 0O wheny =% a, it is neces-

sary that
Acoshal)\a + Bcosh az)\a =0
or
A = - B = k() (G3-33)
coshaZXa coshaIXa )

Substitution into Equations G3-27, G3-30, G3-31 and G3-32 yields

$ = k(\) (coshazla)(cosh al)\y) - (coshal)\a)(coshazly)] sinkx, (G3-3L)

2 r 1
-t =xA"k(\) l‘(alcosh a,\a)(sinh al)\y)- (azcosh alxa)(siﬁh az}\y)Jcosh)\x,

xy
(63-35)
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kxpx = xzk(X)[(alzcoshazla)(coshul)\y) - (u22coshaIXa)(coshaZXy)]sinXx,
(G3-36)

kyPy = - zk(X)l:(coshaZXa)(coshaIXy) - (coahal)\a)(coahazky)]sinlx .
(G3-37)

The end load in the skin fromy = 0 to y = a is given by

a
j; kaxtdy = th(k)[(alcoshazla)(sinhalla) - (azcolhalla)(sinhazka)]sin)\x,

(G3-38)

and the end load in one flange is given by

A2k )
(AFPx)y=a = X (al - a, )(coshalka)(coshazka) simx. (G3-39)

If 2T° is the total end load, integration with respect to \ from

0 to oo yields

o
2T
—“—9 i[ltk(l)[(alcoshazla)(sinhalla) - (azcoahal)\a)(sinhazka)

2
Y (o

- azz)(coahalka)(coshazla)] sinm\xd\ .(G3-40)
x

If To is constant, it may be represented by the integral

2To fmsinkx
-— J, T ar. (G3-L1)
Since the two integrals must be the same,
2T
ntx GIXa(coshaZXa)(sinhaIXa) - GZXG(COBMIXa)(BinhazﬁS
+ :11'}\21120112 - a22)(cosmlla)(coehazla) (G3-L2)
where m = a:Ft Therefore

o
b
3



2T a /"” (cosha,ha)(cosha \y) - (cosha,ha)(cosha,\y) simixd\
0

P alka(cosmzka)(sinhal)\a) - azla(coehuIXa)(sinhazkaT
A
+ uﬁ\zaz(al2 - a22)(cosha1)~a)(cosha27»a)
(G3-L3)

Letting O = \a, Equation G3-L3 may be simplified in appearance becoming

a.0 a8
2Toa fm cosh-ia-z cosh—za—z
P B
nt o

L coshule cosmzey

s:.ngi a8
—7 (G3-LL)

2 2
altanhale - ajtanhag + m(a.1 -aq, pI:]

Evaluation of this integral was accomplished using the theory of resi-

dues. The result obtained was

@18 @20Y Onx

C o8 ) CO8——— ——
) Toa ( 2_32) _, cosalen cosazen (G3-45)

é_tzg eiazsec%e-ajfsegrae m(af-—az)
a” (1+m) n 1 1'n 2 2°n=""1 2
where the coefficients "’"ﬁ are roots of the egquation
t ] t 8 + m( 2 2)9 =0

a,tana. - a,tana, w(a,” - a, =0 . (G3-L46)

The stresses are now obtained from Equation G3=L5 by differentiation.

Letting '1‘0 = poakxt(1+m) where P, is the uniform stress at x = m, the

stresses are

a 9 oY a29 y
. n 6.
a 31n-—- 0 A8 1 Ne—— n
% a _ 2 a e -
cosa e cosa B
< = -
SE- = 2P k (1+m)§ . 2°n ,

sec a 9 n-%2 sec2u29n+m(a12-a

(G3=U47)
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2 %18, o 8,8,

q cos—- a C O S—vmmmmmase -enx
a 2 a
1 2% cosa B ~ Tcosa_8 €
P = o a P + 2P (1+m) 2°n ,
x k 2
x dy sec a 9 n¢ 2secza. 6 +m(a 2-a 2)
2 2°n 1 2
(G3-L8)
algny ulqny Onx
CcOS C O Seemens— - n
a -
2P k_(1+m) cosa ~ cosa e
p =1 32@ - o X § : 1n_ 2 n .
yTE T3 T 7 5 3 3
y 3x y @, sec’a.f -a,"sec’a9 +m(a,"-a,")
(G3-L9)

Numerical Example

Applying the analysis to panel C shown in Figure G2 with a 1000

compressive load acting on each of the outer flanges, for the average

dimensions,
b - 2000 _
o~ 2(0.5557)+2(0.5632)+2(0.5618)+0.5612+2(0.099)(2, 84)+(0.1014)(2.846)
+(0.99)(2.845)
= 355.4 psi
¢ = 200.5557)42(0.5632)+2(0.5618)+0.5612 _ 0.19701 .
x — 2(Z.8L+2.8GL+2.8L5y
Ty 0.19701
kx=1+T=1+T—=2.9701.
k=1,
y =1
1 0.3366
kkx. ~ 7.9701
o« 2
1 —
k—'=1*“(1"-- /H'fu(l-l,],-l' :
x x'y “x %J x'y

311



N

"l

! 1 1 2
1+ (1 - 0.3366) + f]1 +3(1 - 0.3366)] - 0.3366
X

2,2956.

a, =~/2.2956(2.9701) = 2.611

“22 1 1 2
4 = 1 +%(1-0.3366) - E + -5(1-0.3366)] - 0.3366 = 0.1466.
x .

a, =,J0.1u66(2.9701) = 0.6599.

en are given by the roots of the equation

2.611tan2,6110 - 0.6599tan0.65996 + m(6.81816 - 0,43542)5 = 0,

where

A

m = ;g = 0.2268,
or

2.611tan2,6116 - 0.6599tan0.65998 + 1.44760 = 0. (63-50)

A digital computer program written in Bama Bell for the Univac So-
1id State 80 computer at the UInivergity of Alabama was used to determine
the roots to this equation.

It should be noted that the discontinuities existing in Equation
G3-50 can be avoided by rewriting it as

2,6118ih2.6116c080.65990 - 0.65998in0.65996c082.6116

+ 1,44650c082.6110c080, 65999 = 0. (G3-51)

The computer program used in solving for the roots to Equation G3-51 is as

follows:

193 1556901000
194 1506901000
195 1202193223
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196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

0600000000
0800000005
1201100106
5001100400
3101400401
3102400402
R602401403
R603401404
R602402405
R603402406
3101406407
3407403407
3102405408
3406408408
3103400409
3409404409
3409406409
2407408410
1410409410
3410104411
9411105218
R400598000
5001410104
5001400500
1400100400
5001250620

5001251626
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223

250

251

598

599

600

601

602

603

604

605

606

607

608

609

614

615

616

617

618

619

620

621

R400200000
7000010600
7000010600
5001104299
5001400300
1500300501
3106501501
3101501503
3102501503

R602502504

R603502505
R602503506

R603503507
3101507508
3508504508
3102506509
3509505509
3103501510
3510505510
3510507510
2508509511
1510511510
3510299511
9511105624
5001501300
7000010600

5001501509
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622 1241509510
623 R400218000

624 5001501500

625 5001510299
626 7000010600
627 5001501509
628 1241509510
629 R400218000
2zz 193

If we write Equation G3-51 in the general form

Clcosczesincle - Czcosclesincze + C3ecosclecoscze =0, (G3-52)

the data used in the computer program and their locations are as fol-

lows:

100 4850000000

101 c, (in floating point)
102 02 (in floating point)
103 C, (in floating point)
104 5010000000

105 0000000000

106 4950000000

The print out format is as follows:
6 £(0) .
The magnitude of £(@) is an indication of the accuracy of the computa-
tion; the nearer it is to zero, the more accurate is the root.
The above program does not have a stop order and will run until the
desired number of roots have been found. In this example, the computa-

tion was stopped after the first 12 roots were found. They were as fol-
lows:
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6 £(6)
0.9999756 0.40652682
2,1499756 0.38730410
2,3500245 0.59294616
3.1715868 0.00000013
4,3577845 0.00000570
5.5404765 0.00000300
6.6999760 0.27386818
7.1000245 0.38465892
7.9000245 0.01819730
9.0980275 0.00001230

10.295401 - 0,00002060
11.500111 0.00009496

The above roots to the transcendental equation were used in Equa-
tion G3-L8 for the evaluation of the stringer stresses in the x direction.
Evaluation of Equation G3-48 was carried out from x = O to x = 2 at incre-

ments of x = 1, A digital computer program was aiso written to perform

these calculations., It was as follows:

204 1556901000
205 1506901000
206 0600000000
207 0800000005
208 1201098123
209 6700701000
210 3103111400

2111 3112400401
212 R603401401

213 3104401402
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2141
215
216
217
218
2191
220
221
2221
223
224
225
226
227

228

233
234
236
237
238
240
241

242

3112105403
R603403403
4402403402
4401403401
3106111404
3112404405
Reosudsuos
3107405406
3112108407
R603407407
4406407406
4405407405
3403403403
4099403403
3104403403
3407407407
4055407407
3107407407
2403407403
1403109403
R400236000
2402406402
41402403402
R400240000
7082241001
5001402599

Z100011211
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243
800
801
8021
803
244
245
246
2471
2491
250
251
252
253

254

258
259
260
261
262
263
264
265

266

Z2z

R400800000
2092239499
2092241599
3112098415
R400244000
4415110415
R601415415
4099415415
R400249000
3600415417
1417701701
Z100011802
3700102700
3701101701
1100701700
R400256000
5001098698
5001111699
1241698700
1099098098
6700701000
7000024802
1110111111
6098098000
7000001209
1260000000

R403000000
204
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Equation G3-48 is shown plotted in Figure G7 along with experi-

mental data for comparison.

Stringer Sheet Solution

Consider Figure G3-2 which shows a reinforced cylindrical shell.

Take axes O_, Oy, O, as shown in Figure G3-2, O, being parallel to the axis

of the cylinder and O any convenient point of its cross section.

Let w = displacement in direction 0z

8 = distance along the circumference, measured from some
fixed point on the circumference.

u,v = displacements of the point O parallel to Ox and Oy
respectively.

B = angle of rotation of the cross section about O.

Refering to Figire G3-3 the displacement of the point P parallel
to the tangent at P is

Bh + ucos® + vsind . (G3-53)

The shear strain is

3 9 s
€og = 3%' + 37 Bh + ucosd + veingd (G3-5L4)
_O9w _d dx
5t 3 Oh+ug v
2C1+u)%
_ow d du dx _ dv dy _ 8z
R B E
Also, the longitudinal strain
_ow _ Fe :
€2 "32 T F (G3-55)

Pz being the average longitudinal stress in skin and stiffeners, as
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defined in the first part of this appendix. Summing forces on an ele-

ment of the shell in direction Oz,

aTzs aPz
3z teur 70 (G3-56)
where
t.
kz =1 + T (G3—57)

Substituting squations G3-5L and G3-55 into equation G3-56

2 2 2 2
9__"2.' + k2 a_‘; = - %t..;.%z? + %9_; + %’.i.% (G3-58)
os 9z ‘ds ds
where
K =201 + Wk . (G3-59)

For a flat panel, the right hand side of equation G3-58 is zero

since the-substitutions

S =x
y=0
h=0

can be made.
Assuming the fundamental solution
w = Al (cosh\ks)(cosrz) - 1], (G3-60)

the normal stress is

P, =E g; = - EA\coshiks(sin\z) . (G3-61)

The end load in the skin is given by

f a k, tEA
o Kk tP ds = - w— (sinh\ka)(siniz) (G3-62)

Also, the strain in the flange is equal to the strain in the skin
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at z = a. Therefore, the end 1load in one flange is

-AFEMcoshna(sim) = - mak, tEA\coshika(simiz) (63-63)

where A, = mak_t. (G3-6L4)

Integrating from O to o with respect to A to obtain the complete

solution,

k tE ®
’I‘o E - —— A(sinh\ka + m\kacoshl\ka)sim\zd). (G3-65)
o

Putting \ka = §, the equation becomes

k tE p®
T, = -;;a— . A(9) (sintﬂ + mcostﬂ) sin%% » . (G3-66)

If To is constant, it may be expressed by the integral

2T %
T - ..;Ef sin 92 999 . (G3-67)
0

Equations G3-66 and G3-67 are identical, and therefore true for all values
of z if
2
2Tok‘a
kztﬁ (sinh® + mPcoshd) ° (G3-68)

A(B) = -

Hence the required solution, using equation G3-53 is given by

[*>)
w =f A(cosh)ykscos\z ~ 1) dx
o

2T fw 1 - cosh 23 cosgz- a6
o a ka

8(sinh® + mbcoshl)

B nk tE J

(G3-69)

When evaluated using complex integration, the final result is

6.8 - an.
w = Tok 2 + 22 cosd 1 - coe—-a-fe -
kztE ka(1l+m) en(l + mcoszen)

- -—
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where the Gn's are the roots to the equation

tanen + men = 0,

Now the normal stress is

P, =P |1+ 2(1 + m)zz: - (G3-70)

Equation G3-70 has been written as a funetion of x to agree with the

other solutions in this paper.

Numerical Example

Applying the stringer-sheet analysis to panel B shown in Figure Gl

with a 1000 compressive load acting on each of the outer flanges, for

the given dimensions

L]

2000

“ D787 + 0.085 + 0.275 + 0.282 + 0,282 + 0,285 + 0.282 + 0.1(0.61)¢

Cer 2 .2
J6J.1J Pﬁ_]_

0.282+0,285+0,275+0,282+0,282+0.285+0.282

t = TS = 0.12598.
kK =k =1+ X =2.2598
x Zz t * °
A, = 0.282,
a = 8,69,
2
kK = 2(1 + p,)kz

2(1 + %)(2.2598) = 6.026133
K = 2,455
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en are the roots to

tanf_ + m6 =0 ,
n n

or, rewriting

sirﬁn + 0.1“366&:0!19n = 0. (G3-71)

The computer program used in the determination of the roots to equa-
tion G3-51, with some changes s> was used in the determination of the roots to
the above transcendental equation. Instruction cards 200 through 214

and 602 through 616 were replaced by the following cards:

200 R602400401

201 R603400402

202 3161400403
203 3#02‘0-63‘&02
204 1401402410
205 R602501502
602 R602501502

603 R603501503

604 3101501504
605 3504503503
606 1502250510
607 R400617000

Writing equation G3-71 in the general form

sinen + Clencosen =0, (G3-72)

the data used in the computer programand their locations are as follows:
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100 4850000000
101 c, (in floating point)
102 5010000000
103 5010000000
104 5010000000
105 0000000000
106 4950000000

The first 12 roots of Equation G3-71 were found to be

A £(0)
2,6075298 -0.00000006
5,.3973575 -0.00000068
8.3402930 -0.00000053

11.365641 0.00000314
14,433643 -0.00000176
17.,525235 0.00000531
12,630902 -0,00000340
23,745538 0.00000264
26.866203 -0,00000151
29,991100 0.00000269
33.119075 -0,00000353
36.249355 0.00000697

The above roots to the transcendental equation were used in equation
G3-70 for the evaluation of the stringer stresses in the x direction.
Evaluation of equation G3-70 was carried out from x = O to x = 24 at incre-
ments of x = 1. A digital computer program was written to perform these

calculations, It was as follows:

103 1556901000
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194
195
196
197
198
199
200
2011
202
203
204
205
206
207
208
209
2101
211
212
213
2141
215
216
217
218
219

220

1506901000
1202193226
R400197000
0600000000
0800000005
1201099116
6700702000
R603105400
3400400400
3103400401
1101401401
4400401401
2082207001
5001401599
Z010011201
Z092207599
Z105099410
4410104410
R601410410
4101410410
3500410415
1415702702
2100011210
3702102702
1101702702
3702100702

5001099701
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221
222
223
224
225
226

mental data for comparison,

1241701702
1101099099
6700702000
7000023210
1260000000
R403000000

193

Equation G3-70 is plotted in Figure G8 along with experi-
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APPENDIX GL

THE SUBSTITUTE SINGLE STRINGER METHOD

In this appendix, the substitute-single-stringer method presented

by Kuhn and Chiarito in Reference G19 will be applied to panel C.

The analysis of a multistringer panel by the substitute single

stringer method requires the following steps:

1. The properties of the substitute panel are established as follows:

A.

The substitute single stringer is first located at the centroid
of the internal forces in the stringers. Although the sheet is
assumed to carry only shear stresses, an effective width. of
sheet is considered to be acting with the sheet. The distance
from the outer flange to the centroid of the stringer areas
is bc.
The area of the flange in the substitute panel is equal to the
area of the flange in the actual panel. The area of the substi-
tute stringer is equal to the sum of the areas of the stringers
in the actual panel plus the effective area of sheet acting
with them,
The substitute stringer is then located according to the em-
pirical relation

b, =[0.65 + 2;;2]1)‘:

where n is the number of stringers in the half panel,

2. The substitute panel is analyzed as follows:

From Figure G3-1b

AFGF + Ttdx - (ch + do’F)AF =0
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(a)
(GF + ch)AF (cL + ch)AL
Ttdx Ttdx
(b) (c) (d)
OphF AL
opX ! \\\\\Y
E koo = o X
E
x
b__]

(e)
FIGURE G3-1. - THREE STRINGER PANEL WITH SYMMETRICAL AXTAL LOAD,
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A.ch =Ttdx .

F
Also,
AL(Oi + dat) - ALFi +Ttdx = 0
Adei = ~ttdx
8o

AFdO? = Ttdx = -ALdaL .

From Figure GL-le, the shear strain at station x is given by

Y = SE(U? - GL) .
The increment of shear strain is

(o - 07)
dy = —-E—SE_E_ dx .

The increment of shear stress is
G
dt = Gdy *-EE(G'F - aL)dx .

Differentiating equation Gl-2,

2

dx G
—_— = e(do_ do.) .
dx‘ DE F L

or
2
9-;- it = 0,
dx

where

(GL-1)

(GL-2)

(GL-3)

(GL~L)

(GL4-5)
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Assuming a solution toequation GL4-L of the form

T = Clekx + Cze—kx. (GL-6)

application of the boundary condition T = 0 at x = 0 yields

0 -0
0= Cle + 02e .
e G =Gy,
8o

Differentiating equation GL-7

g; = Clk(ekx + e'kx) .

Equating equations GL-2 and GL-8,

G(a? - °L) (G4-9)
C, = . GL -9
1 bEk(e™ + o F%y

Application of the boundary condition Op = P/AF, o, =0 atx =1L

L
yields

G(P/AF) (64-10)
C, = . G4-10
1 bEk(eEE7+ e-kL)

Substituting equation GL-10 into equation GL-7

A sa%c =l (G4-11)
Defining
AT = AF + AL (GL-12)
and substituing into equation GL4-5,
Gty

k = W{ . (G)J-IB)

330



Now, from equation GL4-11

¢ = Pk sinhkx _ GPk sinh kx
- 2 coshkL G coshkL °’
DEA_k bEAF(b "‘AT )
EAFAL
kA, .
L sinh kx .
v = T CoshkL ° (Gh-14)

Substituting equation GL-1L into equation GL4-1

PkA
t _ L sinh kx _
dd’F =§’\'dx -Emdx . . (G)-l 15)
Integrating,
o = PAL cosh kx + C
F AF'AT cosh kI, 3" (GL4-16)

Since Op = P/AF at x = L

PA
L
g~ A
SRR X P 2 A N b ] DR AL -Al e
SRR R TRT & A
(GL-17)
Now
, A
AI. cosh kx P L coshkx | P
O. = —— =l 4 . . (Gh-ls)
F E cosh KL E A, coshiL A
Also from equation GhL-1
. t - _ Pk sinhkx
dUL s - q Tdx = g m dx . (Gh-l9)
Integrating,
- P coshkx
LT K GomE * Cu (Gl-20)

Since o, = 0 at x = L,
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cosh kx .’ (G4-21)

- P -
L~ I,; [l cosh KL
Equations G-1l, GL-18, and GL-21 determine the stress distribution in

the substitute stringer, Taking the origin at the tip, the change in
coordinates can be expressed as

X =L - x (G).l.-22)

1 .

Now the approximation

sinh kx sinh k(L-xl) _ s;nh kL cosh kxl cosh kL sinh kxl

CoshkL :©  coshiL - cosh kL N cosh KL

= tanhkl coshkx, = %(ekx1+e"kx1-ekx1+e-kx1) = e 1 (cL-23)

1
may be made, since tanhkL-»1 for large values of kL.
Dropping the subscript on the x and considering the tip as the

origin, Equations GL-1L, GL-18 and GL-21 may now be written

L g-kx (GL-2L)

P Ak
UF = A—T- [1 + g e J , (G).L-ZS)

kxy (GL-26)

Numerical Example

For panel C, the location of the centroid of the internal forces
is (using an effective width equal to one half the distance between

stringers)

A 1
b, = 5575036530255 [(2.5575+a.2ssn.11)(2.275)(0.1)

+2.84(0,564)(1)+5.69(1)+8,1075(0.280)(1) ] ,
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b = 3,740,
c

The areas of the substitute stringer and the flange are

A

_ = 0.7917 + 0.7908 + 0,3938 = 1.9763 inZ.

A

The location of the substitute stringer is

0.565 inz.

b, = (0.65 + 0.35/22)(3.740) = 2.75825 in.

Now substituting the above into the appropriate formulas

(3.9(’106)(0.1)[ 1 1 ]
K = L + = 0.17503 .
0.9 10%2. 758250+ 06>  1.9763

AT = AF + AL = 0.565 + 1,9763 = 2,5413 in2.

x = P"‘L o-kx _ 1000(0.17503)(1.9763) o-0-17503x
- - 0.1(2.55413)

1,361.15e

-0.17503x

S 2 P AL o kX 1000 |, , 1.9763 -0.17503x
F I; I; 2.5413 0.565

393.5 + 1,376.4e"0-17503x

.

p[ - -kx]= 1000 _ ¢-0.17503x
T ol R Ty (- e )

= 393,5(1 - o~ 0-17503xy

The above equations are shown plotted in Figure G11 with experimen-

tal data for comparison.
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APPENDIX G5

MINIMUM ENERGY SOLUTION USING MATRIX METHODS

Dividing panel C into bays with generalized forces as shown in
Figure G5-1, results in a statically indeterminate system which may be
solved by matrix methods. The type of stress distribution assumed as
well as the number of bays used determine the accuracy of the method,

For this analysis it was assumed that the stiffeners transmit only

normal stresses and the sheet material transmits only shearing stresses.

It was further assumed that the panel and loading are symmetrical.
The notation used is the same as used by Bruhn Eﬂg .

For the analysis the following matrix operations are required:

[gri][vaij][gjn]
[gri][ ai:‘][ gjs]

F
3. Evaluate |a %] the inverse of [a ]
rs rs

1. Evaluate | a ]

ce)
2, Evaluate _ars_

9]
J
U]
]
t
far
p—

4, BEvaluate

..
5. Evaluate _Gim_ = [gim] + [gié][crm]
6. Evaluate 9%, [?iuJ[Pmﬁ]

7. As a check the matrix

[eo] = [l ]

may be evaluated, If all matrix operations have been exact, each element

of [Ar should be zero. Due to rounding errors some of the elements may

n
-

not be zero, but they should be small compared with corresponding elements

of [? -.
rn

.
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A Fortran IV program was written to perform the above matrix opera-
tions and the computation for panels B and C was performed by the Univac
1107 at the University of Alabama Research Institute located in Huntsville,
Alabama. Additional details are given in Appendix F. |

Results of these analyses are shown compared with experimental data

in Figures G12 and G13.
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Pl PZ 3 P4
b, b, b, |
1 I 10 19 28
L, 37 45 53
2 T 20 29
L, 38 46 54
3 12 21 30
Le 39 47 55
1+ 4 13 22 3|
L2 40 48 56
3
3 4 23 32
La 4l 49 57
i
6 15 24 33
Lo 42 50 58
r 7 16 25 34
LZ 43 51 59
1
) 17 26 35
L 44 52 60
9 i 7 36
¢

T o o - r

=2.7"
=3.0"
:2.840"
:12.846"
:2.845"

FIGURE G5-1. - GENERALIZED FORCE SYSTEM USED IN MATRIX
ANALYSIS OF PANEL C.

ARE ASSUMED TO BE SYMMETRICAL.

THE PANEL AND LOADING
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APPENDIX H

LITERATURE SURVEY

' The contents of this appendix were previously submitted as parts of
Monthly Progress Reperts Numbers 3; 6, and 7 for NASA Contract NAS8-11155.
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APPENDIX H

LITERATURE SURVEY

During the performance of NASA Contract NAS8-11155, a literature
survey was undertaken to identify current publications related to the
contract work scope. Abstracts were prepared of some of these publica-
tions. This appendix contains a list of publications related to the
project and the abstracts that were prepared.
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Abstracts

1. Babcock, C. D. and Sechler, E. E.: The Effect of Initial Imperfec-
tions on the Buckling Stress of Cylindrical Shells. NASA TN D-2005,
July 1963.

Resulfs of an experimental investigation carried out to determine
the effect of axially symmetric initial imperfections on the buckling
load of a circular cylindrical shell under axial compression are present-
ed.

Fabrication of the shells basically consisted of plating a copper
shell on an accurately machined wax mandrel and melting the mandrel out
of the shell. The wax core was a two to one mixture of refined paraffin
and Mobile Cerese Wax 2305. Plating was accomplished with Cupric Fluo-
borate, Cu(BF4)2. A photograph of the mandrel and finished wax form is
included. A1l shells had a base diameter of 8 inches and a length of 10
inches.

Tests were conducted to determine characteristics of the plated cop-
per. A typical stress-strain curve is presented. Young's modulus was
determined as 13.0 x 106 psi. Evaluation of Poisson's ratio was not at-
tempted. A value of 0.3 was used for Poisson's ratio.

Testing was accomplished using a controlled displacement testing
machine. Loads were monitored using a cylindrical shell on which 2l foil
strain gages were mounted. A photograph of the testing machine and load
measuring shell is included.

After fabrication, the shells were measured for initial imperfection.
This was accomplished by determining the deviation of the generators of
the shell from a straight line. Measurements were made with a reluctance-
type pickup.

The shells were mounted in the testing machine and secured with a
thin layer of Devcon between the cylinder and the testing machine head.
The buckling load of the shells was then determined. Thirty-seven shells
with initial imperfections in the form of a half sine wave along the gen-
erator were tested along with three cylinders with a constant curvature
imperfection along the generator.

Results of the tests are presented in tabular and graphical form.
The table indicates model geometry, intended initial imperfection, buck-
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ling stress, Eigen number, and the variation of load distributions near
buckling. Load distribution as a function of applied load is shown graph-
ically for two of the cylinders tested.

The analysis developed in the Appendix is used for comparison with
experiments. The solution of the perturbation equations satisfies com-
patibility exactly and equilibrium approximately. Experimental results
were well below those predicted analytically for the buckling stress
(about 0.7 of the theoretical stess). Test results show reasonable scat-
ter for tests on cylinders.

The authors are at the California Institute of Technology. 7 References.

2. Card, M. F.: Bending Tests of Large-Diameter Stiffened Cylinders
Susceptible to General Instability. NASA TN D-2200, April 196k.

Seven ring-and-stringer stiffened, circular cylinders were loaded
to failure in bending. Correlation between orthotropic buckling theory
and experiment was found to be fairly good, discrepancies being attribu-=
ted mainly to uncertainties in two of the orthotropic stiffenesses. Graphs
are presented showing both calculated and test results. Calculated data
is about 10 percent conservative for the group I (b/t = 125) cylinders
and 20 to 30 percent conservative for the group II (b/t = 200) cylinders.

Test specimens consisted of seven 77-inch-diameter cylinders, stiff--
ened on the outer surface with extruded Z-section stringers and on the
inner surface with small, formed hat-section rings. Dimensions of the
small rings and stringers as well as the overall dimensions of the cyl-
inders are presented in figures and tables. Cylinders were constructed
of 7075-T6 aluminum alloy.

The cylinders were loaded in bending through a loading frame with
the use of a hydraulic jack. A photograph of the test setﬁp is shown.
Each cylinder was instrumented with resistance~type wire strain gages,
to detect local buckling; to detect overall buckling of the cylinder wall;
and to indicate stress distribution in the cylinder. Strains were re-
corded at a virtually continuous rate.

To predict general instability loads for the test cylinders, an orth-
otropic compressive stability equation that is a function of eight stiff-
nesses. Methods of evaluating these stiffnesses are presented and the
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sensitivity of general instability predictions to these stiffnesses is
given in the appendix. The results of this study indicated that the gen-
eral instability curves could be affected considerably by the magnitudes
of the circumferential bending stiffness and the shearing stiffness.

It is suggested that one cause of the discrepancy between theory and
experiment might be attributed to the customary lack of agreement between
small-deflection buckling theory and experiment. A correlation factor is
usually applied to buckling computations to bring them into better agree-
ment with experiment. For orthotropic cylinders there is a lack of exper-
imental information upon which to %ase this emperical parameter.

The effects of asymmetry of the walls of the test cylinders was in-
vestigated and found to be negligible.

The author is at Langley Research Center. 1L References.

3. Clark, R. A. and Garibotti, J. F.: Longitudinal Bending of A Conical
Shell. Douglas Missile and Space Systems Division, Engineering Paper 1547,
March 1963.

Longitudinal bending of an elastic truncated conical shell under
lateral or "wind" loads is considered. Corrections to the membrane so-
lution are obtained by applying the general linear bending theory of thin
elastic shelils.

The basic eighth-order system of differential equations obtained by
linear bending theory is reduced following the method of Chernina to a
pair of coupled second-order non-homogeneous differential equations. An
approximation consistent with thin shell theory is made and the pair of
second-order equations are reduced to a single complex differential equa-
tion of second-order.

Approximate edge-zone solutions are given in terms of elementary func-
tions. Explicit formulas for maximum edge-zone stresses are given. The
solutions are illustrated by applying them to a shell subjected to a re-
sultant bending moment at each end. A numerical example is solved and
compares favorably with a numerical study of G. A. Thruston.

The author is at Case Institute of Technology, Cleveland, Ohio. 8 Refere.-

ences.
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Gerard, G., and Papirno, R.: Minimum Weight Design of Stiffened Cyl-
inders for Launch Vehicle Applications. Allied Research Associates, Inc.,
Technical Report No. 235-5, March 13, 196L.

The minimum weight analysis of moderate length, grid stiffened cy-
linders under axial compression is presented based on the use of ortho-
tropic cylinder theory.

The comparative efficiencies of various types of stiffening systems
are presented for a broad range of the governing structural loading par-
ameter. Design data on current and projected launch vehicles indicate
that all such designs fall within a very narrow range of the structural
loading parameter. This observation permits a set of generalized ‘condlu--
Sions to be drawn toncerning the solution of the efficient.stiffening
Systems and materials for launch vehicle design:’ )

1. The N/Ed range of current and projected launch vehicles is such
that elastic buckling considerations govern if reasonable com-
pressive yield strength materials are utilized. Because elas-
tic buckling governs the lower density alloys become desirable
(except for the pressure stabilized case).

2. On the basis of compressive loading as the design criterion, -

¢ 1s no advantage in using high strength sheet materials for
the primary launch vehicle structure (except for the pressure
stabilized case) since the N/Ed range is relatively low. In
fact, aluminum alloys with a compressive yield strength of 50
psi should be quite adequate.

3. In the launch vehicle N/Ed range considered, optimum grid stiff-
ened cylinders are roughly one-quarter of the weight of unstiff-
ened cylinders. Moreover, they are directly competitive with
optimum sandwich cylinders.

L. Pressure stabilized cylinders that utilize high strength sheet
materials (E/O'ty = 100) are distinctly superior to other forms
of construction at the lower end of the launch vehicle N/Ed
range. From a materials viewpoint, the efficiency of pressure
stabilized structures depends upon the tensile strength/density

ratio.
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The Authors are with Allied Research Associates. 10 References.

5. Goldberg, J. E.: Analysis of Conical Shells Under Unsymmetrical Con-
ditions. General Dynamics/Astronautics, ERR~AN-080, November 15, 1961.

The differential equations for determining the stresses and displace-
ments in this conical shells under unsymmetrical loads are presented. The
equations are in a form which is especially convenient for numerical inte-
gration on a digital computer. The usual assumptions of classical shell
theory are employed. Variations in thickness and mechanical properties
may exist along the generatory; however, thickness and mechanical proper-
ties are assumed not to vary in the circumferential direction. Also,
temperature gradients along the generator and through the thickness but
having no circumferential variation are included.

The final forms of the equations are presented as an eighth order
system of first order equations. They are presented in a form which makes
them particularly convenient for numerical integration, and the fact that
the equations do not involve derivatives of the thickness or of the wall
rigidities makes them particularly convenient for non-uniform shells.

Equations for normal and shearing forces, and bending and twisting

moments are also presented.

The author is at General Dynamics/Astronautics. No References.

6. Hayashi, T. and Hirano, Y.: Buckling of Orthotropic Cylinders Under
External Pressure. Transactions-Japan Society for Aeronautics and Space
Sciences, Vol. 6, No. 9, 1963, pp. 18-26.

This paper presents the solution for the buckling of orthotropic
circular cylindrical shells under external pressure. The formulas for
the buckling pressure are derived using the small deflection theory.

Some experimental studies were carried out using three circular cy-
lindrical shells made of fiber reinforced plastics. The test results were
compared with the theoretical results for the case of hydrostatic pres-
sure. The external pressure was applied by decreasing the pressure in-
side the cylinders by a vacuum pump.

The cylind
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form. Materials used in making the cylindrical bulkheads were glass
cloths and polyester resin. The cylinders were bonded to the bulkheads
using polyester resin. Wire strain gages were attached to the outside

of the wall to measure the circumferential strain distribution. The di-
mensions and elastic properties of the cylinders are given in tabular form
and the experimental setup is shown in a schematic diagram.

The measured buckling pressure is compared with the theoretical in
tabular form. Agreement is good. However, the authors suggest that more
tests on cylinders with higher orthotropy be performed to check the theory
more extensively.

The authors are members of the Faculty of Engineering, University of Tokyo.

7 References.

7. Horton, W. H. and Durham, S. C.: Variation in Buckle Shape in Cylin-
drical Shells Under External Pressure and Axial Load. ATAA Journal, Vol.
2, No. 5, May 196.

- Literature on the behavior of cylindrical shells under the combined
action of internal or external pressure and axial compression is reviewed.

An examination of results of other investigations led to a corolla-
tion between the buckling angle and the pressure ratio, p/ocr. The re-
sults are shown graphically. Geometric parameters for shells used by the
other investigators are collected in tabular form.

It is emphasized that the shells used to obtain corollation between
the buckling angle and p/O'cr had a large variation in (R/t) ratios and
in Modulus of Elasticity (some cylinders were made from steel and others
were made from aluminum). There was no significant variation in the L/D
ratio.

An elliptic curve is used to fit the data and the equation of the

curve is presented.

The author is at Stanford University. 7 References.

8. Hubka, R. E.: Approximate Influence Coefficients of Cantilevered
Stiffened Thin-Walled Conical Frustums Under End Load. Space Technology
Laboratories, Inc., BSD-TDR-63-1L, January 1963.
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°

The problem of determing approximate influence coefficients for a
cantilevered stiffened thin-walled conical frustum is considered. The
large end of the frustum is considered built into a rigid wall while the
small end is considered attached tc a rigid movable plate. Assuming that
the stiffeners are close together, the cone is treated as a uniform orth-
otropic material. Influence coefficients associated with both the shear
and moment at the loaded (movable) end are derived using membrane theory.
Example values of influence coefficients are presented for both stiffened
and unstiffened cases. Results indicate that a negative coupling effect

is more pronounced for a stiffened than an unstiffened cone.

The author is at Space Technology Laboratories, Inc., Redondo Beach, Cal-

ifornia. ) References.

9. Peterson, J. P., and Dow, M. B.: Compression Tests on Circular Cy-
linders Stiffened Longitudinally by Closely Spaced Z-Section Stringers.
NASA MEMO 2-12-59L, March 1959.

Slx c1rcular cyllnders stiffened longitudinally by closely spaced

Z-section strlngers were loaded to failure in compression. Stiffeners

ware clos 'l-tr snaced so that loeal 'h'nr-l('l'!r\c of the r‘v']"lnﬂp?‘ wall did not

cicsel o S = o s

occur prior to general or overall buckling. The results obtained are
presented and compared graphically with: available theoretical results for
the buckling of orthotropic cylinders. Buckling loads were predicted
with an error of 15 percent which was reduced to very nominal values af-
ter modification of the theories with empirical correction factors de-
duced from supplementary panel tests and unstiffened cylinder tests.

The main series of tests were conducted on 7075-T6 aluminum allow
circular cylinders stiffened longitudinally by Z-section stringers and
loaded in compression. Auxiliary test specimens, used in determination
of the value for the fixity coefficient and the effectiveness factor,
consisted of a series of four longitudinally stiffened flat panels and
of three unstiffened circular cylinders. Dimensions of all specimens are

given in tabular form.

The authors are at Langley Research Center. 7 References.

-10. Pogorelov, A. V.: Post-Buckling Behavior of Cylindrical Shells.
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NASA TT F-90, April 196l.

This report is a translation that is divided into two parts: axial
compression: and external pressure.
The problem of loss of stability of a cylindrical shell in axial com~

pression is presented with special attention devoted to the equilibrium

condition for a cylindrical shell and the upper critical load. Some ex-
perimental data are given.

A general investigation of the transcritical elastic state of a cy-
lindrical shell in compression follows. The shape of the compressed cy-
lindrical shell in the transcritical state of deformation is defined. The
energy of elastic deformation of the shell is determined and a section is
devoted to the determination of the state of equilibrium of a compressed
c¢ylindrical shell under conditions of transcritical deformation.

The lower critical load for the basic case of a cylindrical shell in
compression is determined by first determining the parameters character-
izing the derformation of the shell as a whole, then setting up numerical
calculations to determine the lower critical load. Results of these nur
merical calculations are given.

The last chapter dealing with axial compression is devoted to a qual-
itative investigation of the transition to transcritical deformation of a
cylindrical shell in compression. The shape of the shell surface under
conditions of transcritical deformation is discussed as well as the equi-
1ibrium state of a shell under conditions of transcritical deformation.

The next chapter is devoted to the study of the loss of stability of
a cylindrical shell acted upon by external pressure. The state of elastic
equilibrium following loss of stability of primary form is discussed. The
upper:: critical load is determined and some experimental data are presented.

An investigation of the equilibrium of the buckled shell and the de-
termination of the lower critical load is made for the case of relatively
thick shells and for the case of relatively thin shells.

The post-buckling behavior of a cylindrical shell under the combined
action of an axial and a transverse load is examined by first discussing
the loss of stability of the shell and then examining the elastic energy
of the shell and the work done by the external load.

The author is at Izdatel'stvo Khar'lovskogo Universiteta. No References.
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11. Schumacher, J.: Statistical Determination of Strength Properties.
Convair Astronautics Report AZS-27-274A, November 1958.

Methods of evaluating strength properties statistically are presented
for the cases when scatter of test results necessitates that design pro-
perties be defined in terms of probability levels. Selection of these
levels depends on the particular design, its chances of failure, and the
consequences of failure.

Two strength levels now in use are MA" and "B" values defined as fol-
lows:

/ "A® value-that level which would be exceeded by at least 99% of the entire
population with 95% confidence.
"B® value-that level which would be exceeded by at least 90% of the entire
population with 95% confidence.

The various terms used in statistical analysis are defined. These
terms include normal distribution, mean value, standard deviation, sample
mean, sample variance, sample standérd deviation, confidence level, con-
fidence interval, confidence limits, one- and two-sided tolerance limits.

Several example problems are given.

The first example is one in which six specimens were tested for ul-
timate tensile strength and the mean value of UTS and the standard devia-
tion are calculated.

The second is an example in which a 95% confidence interval for the
mean value in the first example is computed.

The third is a continuation of the first example in which an "A"
value for the ultimate tension allowable is computed.

The last example is a continuation of the first example in which a
"B" allowable value is determined.

Included in the appendix is a table of one sided tolerance factors
for the normal distribution.

The author is at Convair Astronautics. 7 References.

12. Stachiw, J. D.: The Effects of Shell Joints and Bonding on the
Stability of Acrylic Resin Cellular Shells. Pennsylvania State Univer-
sity, Ordinance Research Laboratory, Report No. NOrd 16597-97, September
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Six acrylic resin cellular shells were tested under external hydro-
static pressure in a small pressure tank to determine the effects of
joints between individual shell structure components and the effects of
bonding on cellular shell stability. When the shell stiffeners were re-
strained from moving laterally, the location of joints and the degree of
bonding did not affect the general elastic stability enough to cause fail-
ure by elastic buckling. The shells tested were 15.700" long with an I.D.
of 6.625" and 0.D. of 8.715". They were constructed of concentric cylin-
ders separated by stiffeners. The following methods were used to fabri-
cate the acrylic resin circular shells:

Model 6--smooth tube slip-fitted over an externally ribbed tube.

Model 7--internally ribbed tube slip-fitted over a smooth tube.

Model 8--stacked H-ring modules.

Model 9--stacked U-ring modules.

Model 10--annular stiffeners, inserted between concentric tubes.
These annular stiffeners fitted loosely and were sepa-
rated by three spacers located 1200 apart.

Model 11--stacked concentric rings and spacers.

Al1]1 shells failed by material yielding except the one in which the
stiffeners were not restrained from moving laterally. However, the dis-
tribution of stresses and strains on the other shell surfaces was con-
siderably influenced by the location of joints and the degree of bonding.
The shell stresses are calculated by Pulos' and Mihta's formulas. Com-
parison between experimental and theoretical stresses is presented graph-
ically. Curves are not plotted beyond 1000 psi of external hydrostatic
pressure. SR-L strain gages 1/L" long were mounted on the test speci-
mens to measure experimental strains.

Four epoxy resin models of the cellular shells were pressure-tested
and analyzed photoelastically to determine the effects of stress concen-
tration at the junctures of the stiffeners and the inner and outer shell
facings. It was determined that when the fillet radius at the juncture
of the stiffeners and facings is small, serious stress concentrations are
present = at these points along the axis of the cellular shell.

The author is at Pennsylvania State University. 6 References.
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13. Stein, M.: The Influence of Prebuckling Deformations and Stresses on
The Buckling of Perfect Cylinders. NASA Technical Report TR R-190, Feb-
ruary 196).

Large deflection theory is used to compute buckling loads of simply
supported perfect cylinders under combined axial compression and external
pressure considering prebuckliﬁg deformations and stresses induced by the
edge support.

Donnell's large deflection theory and boundary conditions for simple
support are used. Prebuckling deformations are initially considered axi-
symmetric. The nonaxisymmetric displacements that occur at buckling are
added to the prebuckling axisymmetric displacements. Continuity is ex-.:
pressed by the periodicity of the displacements resulting in a set of e-
quations for displacements that have complicated variable coefficients.
The equations are not solved directly rather an equivalent energy approach
is introduced using a variational approach.

Due to the fact that for large curvature parameters, Z = 1000, the
solution Jled to large determinants, results are only presented for Z =
1000. Interaction curves are presented for Z = 50, 100, 200, and 500.
Stress coefficients are presented graphically for external pressure alone,
hydrostatic pressure alone, and axial compression alone for a wide range
of Z within previously prescribed limits.

Previously published experimental results are plotted on the inter-
action curves. Quantitative agreement is good but the lack of qualitative

agreement is not explained.

The author is at Langley Research Center, NASA. 12 References.

1k. Tennyson, R. C.: Buckling of Circular Cylindrical Shells in Axial
Compression. ATAA Journal, Vol. 2, No. 7, July 196L.

Photographs of a photoelastic study of the mechanism of buckling of
circular cylindrical shells under axial compression are presented. Photo-
graphs were made with a Fastax camera. The change in the isoclinic pat-
terns with the buckled waveform are shown. The five shells tested had
geometrical parameters in the ranges, 100 R/t 170, and 2 L/R 6, and
were constructed of photoelastic plastic. Buckling loads were within
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10% of classically predicted values.

By using plane elasticity equations with the assumption that the
shear is zero along the L5° isoclinic, and equation for the isoclinics
is obtained. The family of isoclinics is shown in a graph for the clas-
sical buckling mode shape. The boundary of the isoclinic region is shown
and is in agreement with the photographs.

It is shown that buckling is initially localized; that buckling pro-
ceeds rapidly in the transverse direction; that initial buckling occurs
with n = 10 and m = 12 for the cylinders tested in agreement with class-
ical theory; and that the final buckled state occurs with n'= 5. This

behavior is explained analytically.

The author is at the University of Toronto, Toronto, Ontario, Canada.
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